BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 29801620)

  • 1. Avian parental behavior and nest success influenced by temperature fluctuations.
    Carroll RL; Davis CA; Fuhlendorf SD; Elmore RD; DuRant SE; Carroll JM
    J Therm Biol; 2018 May; 74():140-148. PubMed ID: 29801620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the thermal environment in scaled quail (Callipepla squamata) nest site selection and survival.
    Kauffman KL; Elmore RD; Davis CA; Fuhlendorf SD; Goodman LE; Hagen CA; Tanner EP
    J Therm Biol; 2021 Jan; 95():102791. PubMed ID: 33454032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inadequate thermal refuge constrains landscape habitability for a grassland bird species.
    Tomecek JM; Pierce BL; Reyna KS; Peterson MJ
    PeerJ; 2017; 5():e3709. PubMed ID: 28828282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered embryonic development in northern bobwhite quail (Colinus virginianus) induced by pre-incubation oscillatory thermal stresses mimicking global warming predictions.
    Reyna KS; Burggren WW
    PLoS One; 2017; 12(9):e0184670. PubMed ID: 28926597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Ground-Nesting Galliform's Response to Thermal Heterogeneity: Implications for Ground-Dwelling Birds.
    Carroll JM; Davis CA; Elmore RD; Fuhlendorf SD
    PLoS One; 2015; 10(11):e0143676. PubMed ID: 26618845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of machine learning in behavioral ecology: Quantifying avian incubation behavior and nest conditions in relation to environmental temperature.
    Hawkins WD; DuRant SE
    PLoS One; 2020; 15(8):e0236925. PubMed ID: 32857761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parental Effects and Climate Change: Will Avian Incubation Behavior Shield Embryos from Increasing Environmental Temperatures?
    DuRant SE; Willson JD; Carroll RB
    Integr Comp Biol; 2019 Oct; 59(4):1068-1080. PubMed ID: 31168619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reproductive plasticity and landscape heterogeneity benefit a ground-nesting bird in a fire-prone ecosystem.
    Carroll JM; Hovick TJ; Davis CA; Elmore RD; Fuhlendorf SD
    Ecol Appl; 2017 Oct; 27(7):2234-2244. PubMed ID: 28736847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nest temperature fluctuations in a cavity nester, the southern ground-hornbill.
    Combrink L; Combrink HJ; Botha AJ; Downs CT
    J Therm Biol; 2017 May; 66():21-26. PubMed ID: 28477906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Males Feeding Females during Incubation. I. Required by Microclimate or Constrained by Nest Predation?
    Martin TE; Ghalambor CK
    Am Nat; 1999 Jan; 153(1):131-139. PubMed ID: 29578762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. House-warming: Wild king cobra nests have thermal regimes that positively affect hatching success and hatchling size.
    Dolia J; Das A; Kelkar N
    J Therm Biol; 2023 Feb; 112():103468. PubMed ID: 36796913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity in nest site choice behavior in response to hydric conditions in a reptile.
    Doody JS; McGlashan J; Fryer H; Coleman L; James H; Soennichsen K; Rhind D; Clulow S
    Sci Rep; 2020 Sep; 10(1):16048. PubMed ID: 32994522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extreme climatic events constrain space use and survival of a ground-nesting bird.
    Tanner EP; Elmore RD; Fuhlendorf SD; Davis CA; Dahlgren DK; Orange JP
    Glob Chang Biol; 2017 May; 23(5):1832-1846. PubMed ID: 27633847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of passerine incubation behavior: influence of food, temperature, and nest predation.
    Conway CJ; Martin TE
    Evolution; 2000 Apr; 54(2):670-85. PubMed ID: 10937242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of olfactory and visual cover on nest site selection and nest success for grassland-nesting birds.
    Fogarty DT; Elmore RD; Fuhlendorf SD; Loss SR
    Ecol Evol; 2017 Aug; 7(16):6247-6258. PubMed ID: 28861229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geographic variation in avian incubation periods and parental influences on embryonic temperature.
    Martin TE; Auer SK; Bassar RD; Niklison AM; Lloyd P
    Evolution; 2007 Nov; 61(11):2558-69. PubMed ID: 17714499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Communal nesting under climate change: fitness consequences of higher incubation temperatures for a nocturnal lizard.
    Dayananda B; Gray S; Pike D; Webb JK
    Glob Chang Biol; 2016 Jul; 22(7):2405-14. PubMed ID: 26940852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nest construction by a ground-nesting bird represents a potential trade-off between egg crypticity and thermoregulation.
    Mayer PM; Smith LM; Ford RG; Watterson DC; McCutchen MD; Ryan MR
    Oecologia; 2009 Apr; 159(4):893-901. PubMed ID: 19145449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute exposure to hyperthermic oscillating temperatures during pre-incubation influences northern bobwhite development, hatching, and survival.
    Reyna KS
    PLoS One; 2019; 14(7):e0219368. PubMed ID: 31291310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Avian Incubation Patterns Reflect Temporal Changes in Developing Clutches.
    Cooper CB; Voss MA
    PLoS One; 2013; 8(6):e65521. PubMed ID: 23840339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.