These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 29801620)
1. Avian parental behavior and nest success influenced by temperature fluctuations. Carroll RL; Davis CA; Fuhlendorf SD; Elmore RD; DuRant SE; Carroll JM J Therm Biol; 2018 May; 74():140-148. PubMed ID: 29801620 [TBL] [Abstract][Full Text] [Related]
2. Role of the thermal environment in scaled quail (Callipepla squamata) nest site selection and survival. Kauffman KL; Elmore RD; Davis CA; Fuhlendorf SD; Goodman LE; Hagen CA; Tanner EP J Therm Biol; 2021 Jan; 95():102791. PubMed ID: 33454032 [TBL] [Abstract][Full Text] [Related]
3. Inadequate thermal refuge constrains landscape habitability for a grassland bird species. Tomecek JM; Pierce BL; Reyna KS; Peterson MJ PeerJ; 2017; 5():e3709. PubMed ID: 28828282 [TBL] [Abstract][Full Text] [Related]
4. Altered embryonic development in northern bobwhite quail (Colinus virginianus) induced by pre-incubation oscillatory thermal stresses mimicking global warming predictions. Reyna KS; Burggren WW PLoS One; 2017; 12(9):e0184670. PubMed ID: 28926597 [TBL] [Abstract][Full Text] [Related]
5. A Ground-Nesting Galliform's Response to Thermal Heterogeneity: Implications for Ground-Dwelling Birds. Carroll JM; Davis CA; Elmore RD; Fuhlendorf SD PLoS One; 2015; 10(11):e0143676. PubMed ID: 26618845 [TBL] [Abstract][Full Text] [Related]
6. Applications of machine learning in behavioral ecology: Quantifying avian incubation behavior and nest conditions in relation to environmental temperature. Hawkins WD; DuRant SE PLoS One; 2020; 15(8):e0236925. PubMed ID: 32857761 [TBL] [Abstract][Full Text] [Related]
7. Parental Effects and Climate Change: Will Avian Incubation Behavior Shield Embryos from Increasing Environmental Temperatures? DuRant SE; Willson JD; Carroll RB Integr Comp Biol; 2019 Oct; 59(4):1068-1080. PubMed ID: 31168619 [TBL] [Abstract][Full Text] [Related]
8. Reproductive plasticity and landscape heterogeneity benefit a ground-nesting bird in a fire-prone ecosystem. Carroll JM; Hovick TJ; Davis CA; Elmore RD; Fuhlendorf SD Ecol Appl; 2017 Oct; 27(7):2234-2244. PubMed ID: 28736847 [TBL] [Abstract][Full Text] [Related]
9. Nest temperature fluctuations in a cavity nester, the southern ground-hornbill. Combrink L; Combrink HJ; Botha AJ; Downs CT J Therm Biol; 2017 May; 66():21-26. PubMed ID: 28477906 [TBL] [Abstract][Full Text] [Related]
10. Males Feeding Females during Incubation. I. Required by Microclimate or Constrained by Nest Predation? Martin TE; Ghalambor CK Am Nat; 1999 Jan; 153(1):131-139. PubMed ID: 29578762 [TBL] [Abstract][Full Text] [Related]
11. House-warming: Wild king cobra nests have thermal regimes that positively affect hatching success and hatchling size. Dolia J; Das A; Kelkar N J Therm Biol; 2023 Feb; 112():103468. PubMed ID: 36796913 [TBL] [Abstract][Full Text] [Related]
12. Plasticity in nest site choice behavior in response to hydric conditions in a reptile. Doody JS; McGlashan J; Fryer H; Coleman L; James H; Soennichsen K; Rhind D; Clulow S Sci Rep; 2020 Sep; 10(1):16048. PubMed ID: 32994522 [TBL] [Abstract][Full Text] [Related]
13. Extreme climatic events constrain space use and survival of a ground-nesting bird. Tanner EP; Elmore RD; Fuhlendorf SD; Davis CA; Dahlgren DK; Orange JP Glob Chang Biol; 2017 May; 23(5):1832-1846. PubMed ID: 27633847 [TBL] [Abstract][Full Text] [Related]
14. Evolution of passerine incubation behavior: influence of food, temperature, and nest predation. Conway CJ; Martin TE Evolution; 2000 Apr; 54(2):670-85. PubMed ID: 10937242 [TBL] [Abstract][Full Text] [Related]
15. Influence of olfactory and visual cover on nest site selection and nest success for grassland-nesting birds. Fogarty DT; Elmore RD; Fuhlendorf SD; Loss SR Ecol Evol; 2017 Aug; 7(16):6247-6258. PubMed ID: 28861229 [TBL] [Abstract][Full Text] [Related]
16. Geographic variation in avian incubation periods and parental influences on embryonic temperature. Martin TE; Auer SK; Bassar RD; Niklison AM; Lloyd P Evolution; 2007 Nov; 61(11):2558-69. PubMed ID: 17714499 [TBL] [Abstract][Full Text] [Related]
17. Communal nesting under climate change: fitness consequences of higher incubation temperatures for a nocturnal lizard. Dayananda B; Gray S; Pike D; Webb JK Glob Chang Biol; 2016 Jul; 22(7):2405-14. PubMed ID: 26940852 [TBL] [Abstract][Full Text] [Related]
18. Nest construction by a ground-nesting bird represents a potential trade-off between egg crypticity and thermoregulation. Mayer PM; Smith LM; Ford RG; Watterson DC; McCutchen MD; Ryan MR Oecologia; 2009 Apr; 159(4):893-901. PubMed ID: 19145449 [TBL] [Abstract][Full Text] [Related]
19. Acute exposure to hyperthermic oscillating temperatures during pre-incubation influences northern bobwhite development, hatching, and survival. Reyna KS PLoS One; 2019; 14(7):e0219368. PubMed ID: 31291310 [TBL] [Abstract][Full Text] [Related]
20. Avian Incubation Patterns Reflect Temporal Changes in Developing Clutches. Cooper CB; Voss MA PLoS One; 2013; 8(6):e65521. PubMed ID: 23840339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]