BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 29801639)

  • 1. Effect of tumor properties on energy absorption, temperature mapping, and thermal dose in 13.56-MHz radiofrequency hyperthermia.
    Prasad B; Kim S; Cho W; Kim S; Kim JK
    J Therm Biol; 2018 May; 74():281-289. PubMed ID: 29801639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Estimation of the Equivalent Radiation Dose Escalation using Radiofrequency Hyperthermia in Mouse Xenograft Models of Human Lung Cancer.
    Prasad B; Kim S; Cho W; Kim JK; Kim YA; Kim S; Wu HG
    Sci Rep; 2019 Mar; 9(1):3942. PubMed ID: 30850669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospective treatment planning to improve locoregional hyperthermia for oesophageal cancer.
    Kok HP; van Haaren PM; van de Kamer JB; Zum Vörde Sive Vörding PJ; Wiersma J; Hulshof MC; Geijsen ED; van Lanschot JJ; Crezee J
    Int J Hyperthermia; 2006 Aug; 22(5):375-89. PubMed ID: 16891240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment.
    LeBrun A; Ma R; Zhu L
    J Therm Biol; 2016 Dec; 62(Pt B):129-137. PubMed ID: 27888926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature simulations in hyperthermia treatment planning of the head and neck region: rigorous optimization of tissue properties.
    Verhaart RF; Rijnen Z; Fortunati V; Verduijn GM; van Walsum T; Veenland JF; Paulides MM
    Strahlenther Onkol; 2014 Nov; 190(12):1117-24. PubMed ID: 25015425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in dielectric properties at 460 kHz of kidney and fat during heating: importance for radio-frequency thermal therapy.
    Pop M; Molckovsky A; Chin L; Kolios MC; Jewett MA; Sherar MD
    Phys Med Biol; 2003 Aug; 48(15):2509-25. PubMed ID: 12953912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal dose expression in clinical hyperthermia and correlation with tumor response/control.
    Perez CA; Sapareto SA
    Cancer Res; 1984 Oct; 44(10 Suppl):4818s-4825s. PubMed ID: 6380716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the properties of beam forming bolus in hyperthermia: numerical simulation and empirical verification.
    Aghayan SA; Sardari D; Mahdavi SR; Mohammadi M
    Australas Phys Eng Sci Med; 2014 Dec; 37(4):691-703. PubMed ID: 25318411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artefacts in intracavitary temperature measurements during regional hyperthermia.
    Kok HP; Van den Berg CA; Van Haaren PM; Crezee J
    Phys Med Biol; 2007 Sep; 52(17):5157-71. PubMed ID: 17762078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation.
    Kim KS; Hernandez D; Lee SY
    Biomed Eng Online; 2015 Oct; 14():95. PubMed ID: 26499058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards patient specific thermal modelling of the prostate.
    Van den Berg CA; Van de Kamer JB; De Leeuw AA; Jeukens CR; Raaymakers BW; van Vulpen M; Lagendijk JJ
    Phys Med Biol; 2006 Feb; 51(4):809-25. PubMed ID: 16467580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry.
    Kim KS; Lee SY
    Int J Hyperthermia; 2015; 31(8):831-9. PubMed ID: 26555005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1GHz).
    Winter L; Oezerdem C; Hoffmann W; van de Lindt T; Periquito J; Ji Y; Ghadjar P; Budach V; Wust P; Niendorf T
    Radiat Oncol; 2015 Sep; 10():201. PubMed ID: 26391138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trials of combined radiation and hyperthermia with various heating modalities in cancer therapy.
    Egawa S; Ishioka K; Kawada Y
    Radiat Med; 1984; 2(4):260-4. PubMed ID: 6537595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous radiofrequency (RF) heating and magnetic resonance (MR) thermal mapping using an intravascular MR imaging/RF heating system.
    Qiu B; El-Sharkawy AM; Paliwal V; Karmarkar P; Gao F; Atalar E; Yang X
    Magn Reson Med; 2005 Jul; 54(1):226-30. PubMed ID: 15968681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of blood perfusion rate on the optimization of RF-capacitive hyperthermia.
    Fujita S; Tamazawa M; Kuroda K
    IEEE Trans Biomed Eng; 1998 Sep; 45(9):1182-6. PubMed ID: 9735568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential Evolution Optimization of the SAR Distribution for Head and Neck Hyperthermia.
    Cappiello G; McGinley B; Elahi MA; Drizdal T; Paulides MM; Glavin M; O'Halloran M; Jones E
    IEEE Trans Biomed Eng; 2017 Aug; 64(8):1875-1885. PubMed ID: 28113287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-dimensional model and numerical simulation regarding thermoseed mediated magnetic induction therapy conformal hyperthermia.
    Wang H; Wu J; Zhuo Z; Tang J
    Technol Health Care; 2016 Apr; 24 Suppl 2():S827-39. PubMed ID: 27198462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A numerical study of rapid heating for high temperature radio frequency hyperthermia.
    Anderson G; Ye X; Henle K; Yang Z; Li G
    Int J Biomed Comput; 1994 May; 35(4):297-307. PubMed ID: 8063456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.