These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 29801639)
1. Effect of tumor properties on energy absorption, temperature mapping, and thermal dose in 13.56-MHz radiofrequency hyperthermia. Prasad B; Kim S; Cho W; Kim S; Kim JK J Therm Biol; 2018 May; 74():281-289. PubMed ID: 29801639 [TBL] [Abstract][Full Text] [Related]
2. Quantitative Estimation of the Equivalent Radiation Dose Escalation using Radiofrequency Hyperthermia in Mouse Xenograft Models of Human Lung Cancer. Prasad B; Kim S; Cho W; Kim JK; Kim YA; Kim S; Wu HG Sci Rep; 2019 Mar; 9(1):3942. PubMed ID: 30850669 [TBL] [Abstract][Full Text] [Related]
3. Prospective treatment planning to improve locoregional hyperthermia for oesophageal cancer. Kok HP; van Haaren PM; van de Kamer JB; Zum Vörde Sive Vörding PJ; Wiersma J; Hulshof MC; Geijsen ED; van Lanschot JJ; Crezee J Int J Hyperthermia; 2006 Aug; 22(5):375-89. PubMed ID: 16891240 [TBL] [Abstract][Full Text] [Related]
4. MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment. LeBrun A; Ma R; Zhu L J Therm Biol; 2016 Dec; 62(Pt B):129-137. PubMed ID: 27888926 [TBL] [Abstract][Full Text] [Related]
5. Temperature simulations in hyperthermia treatment planning of the head and neck region: rigorous optimization of tissue properties. Verhaart RF; Rijnen Z; Fortunati V; Verduijn GM; van Walsum T; Veenland JF; Paulides MM Strahlenther Onkol; 2014 Nov; 190(12):1117-24. PubMed ID: 25015425 [TBL] [Abstract][Full Text] [Related]
6. Changes in dielectric properties at 460 kHz of kidney and fat during heating: importance for radio-frequency thermal therapy. Pop M; Molckovsky A; Chin L; Kolios MC; Jewett MA; Sherar MD Phys Med Biol; 2003 Aug; 48(15):2509-25. PubMed ID: 12953912 [TBL] [Abstract][Full Text] [Related]
7. Thermal dose expression in clinical hyperthermia and correlation with tumor response/control. Perez CA; Sapareto SA Cancer Res; 1984 Oct; 44(10 Suppl):4818s-4825s. PubMed ID: 6380716 [TBL] [Abstract][Full Text] [Related]
8. Enhancing the properties of beam forming bolus in hyperthermia: numerical simulation and empirical verification. Aghayan SA; Sardari D; Mahdavi SR; Mohammadi M Australas Phys Eng Sci Med; 2014 Dec; 37(4):691-703. PubMed ID: 25318411 [TBL] [Abstract][Full Text] [Related]
9. Artefacts in intracavitary temperature measurements during regional hyperthermia. Kok HP; Van den Berg CA; Van Haaren PM; Crezee J Phys Med Biol; 2007 Sep; 52(17):5157-71. PubMed ID: 17762078 [TBL] [Abstract][Full Text] [Related]
10. Towards patient specific thermal modelling of the prostate. Van den Berg CA; Van de Kamer JB; De Leeuw AA; Jeukens CR; Raaymakers BW; van Vulpen M; Lagendijk JJ Phys Med Biol; 2006 Feb; 51(4):809-25. PubMed ID: 16467580 [TBL] [Abstract][Full Text] [Related]
11. Nanoparticle-mediated radiofrequency capacitive hyperthermia: A phantom study with magnetic resonance thermometry. Kim KS; Lee SY Int J Hyperthermia; 2015; 31(8):831-9. PubMed ID: 26555005 [TBL] [Abstract][Full Text] [Related]
12. Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1GHz). Winter L; Oezerdem C; Hoffmann W; van de Lindt T; Periquito J; Ji Y; Ghadjar P; Budach V; Wust P; Niendorf T Radiat Oncol; 2015 Sep; 10():201. PubMed ID: 26391138 [TBL] [Abstract][Full Text] [Related]
13. Trials of combined radiation and hyperthermia with various heating modalities in cancer therapy. Egawa S; Ishioka K; Kawada Y Radiat Med; 1984; 2(4):260-4. PubMed ID: 6537595 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous radiofrequency (RF) heating and magnetic resonance (MR) thermal mapping using an intravascular MR imaging/RF heating system. Qiu B; El-Sharkawy AM; Paliwal V; Karmarkar P; Gao F; Atalar E; Yang X Magn Reson Med; 2005 Jul; 54(1):226-30. PubMed ID: 15968681 [TBL] [Abstract][Full Text] [Related]
15. Effects of blood perfusion rate on the optimization of RF-capacitive hyperthermia. Fujita S; Tamazawa M; Kuroda K IEEE Trans Biomed Eng; 1998 Sep; 45(9):1182-6. PubMed ID: 9735568 [TBL] [Abstract][Full Text] [Related]
16. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472 [TBL] [Abstract][Full Text] [Related]
17. Differential Evolution Optimization of the SAR Distribution for Head and Neck Hyperthermia. Cappiello G; McGinley B; Elahi MA; Drizdal T; Paulides MM; Glavin M; O'Halloran M; Jones E IEEE Trans Biomed Eng; 2017 Aug; 64(8):1875-1885. PubMed ID: 28113287 [TBL] [Abstract][Full Text] [Related]
18. A three-dimensional model and numerical simulation regarding thermoseed mediated magnetic induction therapy conformal hyperthermia. Wang H; Wu J; Zhuo Z; Tang J Technol Health Care; 2016 Apr; 24 Suppl 2():S827-39. PubMed ID: 27198462 [TBL] [Abstract][Full Text] [Related]
19. Exploring and validating heating dynamics in a radio-frequency electromagnetic field-based resonant chamber for mouse hyperthermia research. Jiao L; Zhang T; Gao P; Zhou C; Mei X; Zhang W; Lu Y; Zhang L; Zhou Z; Yu Z; He M Electromagn Biol Med; 2024 Jul; 43(3):164-175. PubMed ID: 38859623 [TBL] [Abstract][Full Text] [Related]
20. A numerical study of rapid heating for high temperature radio frequency hyperthermia. Anderson G; Ye X; Henle K; Yang Z; Li G Int J Biomed Comput; 1994 May; 35(4):297-307. PubMed ID: 8063456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]