These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 29801772)

  • 21. The Regulation of Secondary Metabolism and Mutualism in the Insect Pathogenic Bacterium Photorhabdus luminescens.
    Joyce SA; Lango L; Clarke DJ
    Adv Appl Microbiol; 2011; 76():1-25. PubMed ID: 21924970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A genomic sample sequence of the entomopathogenic bacterium Photorhabdus luminescens W14: potential implications for virulence.
    Ffrench-Constant RH; Waterfield N; Burland V; Perna NT; Daborn PJ; Bowen D; Blattner FR
    Appl Environ Microbiol; 2000 Aug; 66(8):3310-29. PubMed ID: 10919786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The genetic basis of the symbiosis between Photorhabdus and its invertebrate hosts.
    Clarke DJ
    Adv Appl Microbiol; 2014; 88():1-29. PubMed ID: 24767424
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel antibiotic compounds produced by the insect pathogenic bacterium photorhabdus.
    Eleftherianos IG
    Recent Pat Antiinfect Drug Discov; 2009 Jun; 4(2):81-9. PubMed ID: 19519542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterisation of symbionts of entomopathogenic nematodes by universally primed-PCR (UP-PCR) and UP-PCR product cross-hybridisation.
    Nielsen O; Lübeck PS
    FEMS Microbiol Lett; 2002 Sep; 215(1):63-8. PubMed ID: 12393202
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of Photorhabdus-induced bioluminescence and red cadaver coloration on the deterrence of insect scavengers from entomopathogenic nematode-infected cadavers.
    Cimen H
    J Invertebr Pathol; 2023 Feb; 196():107871. PubMed ID: 36493844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photorhabdus and a host of hosts.
    Waterfield NR; Ciche T; Clarke D
    Annu Rev Microbiol; 2009; 63():557-74. PubMed ID: 19575559
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae.
    Abebe-Akele F; Tisa LS; Cooper VS; Hatcher PJ; Abebe E; Thomas WK
    BMC Genomics; 2015 Jul; 16(1):531. PubMed ID: 26187596
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome comparisons provide insights into the role of secondary metabolites in the pathogenic phase of the Photorhabdus life cycle.
    Tobias NJ; Mishra B; Gupta DK; Sharma R; Thines M; Stinear TP; Bode HB
    BMC Genomics; 2016 Aug; 17():537. PubMed ID: 27488257
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Response of three cyprinid fish species to the Scavenger Deterrent Factor produced by the mutualistic bacteria associated with entomopathogenic nematodes.
    Raja RK; Aiswarya D; Gulcu B; Raja M; Perumal P; Sivaramakrishnan S; Kaya HK; Hazir S
    J Invertebr Pathol; 2017 Feb; 143():40-49. PubMed ID: 27908637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacteria from the Midgut of Common Cockchafer (
    Skowronek M; Sajnaga E; Pleszczyńska M; Kazimierczak W; Lis M; Wiater A
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963214
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PCR-ribotyping of Xenorhabdus and Photorhabdus isolates from the Caribbean region in relation to the taxonomy and geographic distribution of their nematode hosts.
    Fischer-Le Saux M; Mauléon H; Constant P; Brunel B; Boemare N
    Appl Environ Microbiol; 1998 Nov; 64(11):4246-54. PubMed ID: 9797272
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and occurrence of the hydroxamate siderophores aerobactin, putrebactin, avaroferrin and ochrobactin C as virulence factors from entomopathogenic bacteria.
    Hirschmann M; Grundmann F; Bode HB
    Environ Microbiol; 2017 Oct; 19(10):4080-4090. PubMed ID: 28654175
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of symbiotic bacteria (Photorhabdus and Xenorhabdus) from the entomopathogenic nematodes Heterorhabditis marelatus and Steinernema oregonense based on 16S rDNA sequence.
    Liu J; Berry RE; Blouin MS
    J Invertebr Pathol; 2001 Feb; 77(2):87-91. PubMed ID: 11273687
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic toolbox for Photorhabdus and Xenorhabdus: pSEVA based heterologous expression systems and CRISPR/Cpf1 based genome editing for rapid natural product profiling.
    Rill A; Zhao L; Bode HB
    Microb Cell Fact; 2024 Apr; 23(1):98. PubMed ID: 38561780
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Function and Global Regulation of Type III Secretion System and Flagella in Entomopathogenic Nematode Symbiotic Bacteria.
    Huang X; Li C; Zhang K; Li K; Xie J; Peng Y; Quan M; Sun Y; Hu Y; Xia L; Hu S
    Int J Mol Sci; 2024 Jul; 25(14):. PubMed ID: 39062822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. OpnS, an outer membrane porin of Xenorhabdus nematophila, confers a competitive advantage for growth in the insect host.
    van der Hoeven R; Forst S
    J Bacteriol; 2009 Sep; 191(17):5471-9. PubMed ID: 19465651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scavenger deterrent factor (SDF) from symbiotic bacteria of entomopathogenic nematodes.
    Gulcu B; Hazir S; Kaya HK
    J Invertebr Pathol; 2012 Jul; 110(3):326-33. PubMed ID: 22446508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts.
    Nielsen-LeRoux C; Gaudriault S; Ramarao N; Lereclus D; Givaudan A
    Curr Opin Microbiol; 2012 Jun; 15(3):220-31. PubMed ID: 22633889
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photorhabdus: a model for the analysis of pathogenicity and mutualism.
    Clarke DJ
    Cell Microbiol; 2008 Nov; 10(11):2159-67. PubMed ID: 18647173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.