These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 29801789)
41. Carboxylate transporter gene JEN1 from the entomopathogenic fungus Beauveria bassiana is involved in conidiation and virulence. Jin K; Zhang Y; Fang W; Luo Z; Zhou Y; Pei Y Appl Environ Microbiol; 2010 Jan; 76(1):254-63. PubMed ID: 19854926 [TBL] [Abstract][Full Text] [Related]
42. Uptake of the fluorescent probe FM4-64 by hyphae and haemolymph-derived in vivo hyphal bodies of the entomopathogenic fungus Beauveria bassiana. Lewis MW; Robalino IV; Keyhani NO Microbiology (Reading); 2009 Sep; 155(Pt 9):3110-3120. PubMed ID: 19542008 [TBL] [Abstract][Full Text] [Related]
43. Non-host larvae negatively impact persistence of the entomopathogen Beauveria bassiana in soil. Blond CLH; Ridgway HJ; Brownbridge M; Chapman RB; Condron LM; Saville DJ; Glare TR J Invertebr Pathol; 2018 Jul; 156():19-28. PubMed ID: 30003920 [TBL] [Abstract][Full Text] [Related]
44. The transcriptional co-activator multiprotein bridging factor 1 from the fungal insect pathogen, Beauveria bassiana, mediates regulation of hyphal morphogenesis, stress tolerance and virulence. Ying SH; Ji XP; Wang XX; Feng MG; Keyhani NO Environ Microbiol; 2014 Jun; 16(6):1879-97. PubMed ID: 24612420 [TBL] [Abstract][Full Text] [Related]
45. Clues on the role of Beauveria bassiana catalases in alkane degradation events. Pedrini N; Juárez MP; Crespo R; de Alaniz MJ Mycologia; 2006; 98(4):528-34. PubMed ID: 17144022 [TBL] [Abstract][Full Text] [Related]
46. Implication of a regulator of G protein signalling (BbRGS1) in conidiation and conidial thermotolerance of the insect pathogenic fungus Beauveria bassiana. Fang W; Scully LR; Zhang L; Pei Y; Bidochka MJ FEMS Microbiol Lett; 2008 Feb; 279(2):146-56. PubMed ID: 18201190 [TBL] [Abstract][Full Text] [Related]
47. Complex nitrogen sources from agro-industrial byproducts: impact on production, multi-stress tolerance, virulence, and quality of Lima VH; Matugawa AT; Mascarin GM; Fernandes ÉKK Microbiol Spectr; 2024 Jun; 12(6):e0404023. PubMed ID: 38700331 [TBL] [Abstract][Full Text] [Related]
48. A p53-like transcription factor, BbTFO1, contributes to virulence and oxidative and thermal stress tolerances in the insect pathogenic fungus, Beauveria bassiana. Wang JJ; Yin YP; Song JZ; Hu SJ; Cheng W; Qiu L PLoS One; 2021; 16(3):e0249350. PubMed ID: 33788872 [TBL] [Abstract][Full Text] [Related]
49. The MAP kinase Bbslt2 controls growth, conidiation, cell wall integrity, and virulence in the insect pathogenic fungus Beauveria bassiana. Luo X; Keyhani NO; Yu X; He Z; Luo Z; Pei Y; Zhang Y Fungal Genet Biol; 2012 Jul; 49(7):544-55. PubMed ID: 22587950 [TBL] [Abstract][Full Text] [Related]
50. Infection of the red palm weevil (Rhynchophorus ferrugineus) by the entomopathogenic fungus Beauveria bassiana: a SEM study. Güerri-Agulló B; Gómez-Vidal S; Asensio L; Barranco P; Lopez-Llorca LV Microsc Res Tech; 2010 Jul; 73(7):714-25. PubMed ID: 20025054 [TBL] [Abstract][Full Text] [Related]
51. A conidial protein (CP15) of Beauveria bassiana contributes to the conidial tolerance of the entomopathogenic fungus to thermal and oxidative stresses. Ying SH; Feng MG Appl Microbiol Biotechnol; 2011 Jun; 90(5):1711-20. PubMed ID: 21455593 [TBL] [Abstract][Full Text] [Related]
52. Differential fluctuation in virulence and VOC profiles among different cultures of entomopathogenic fungi. Hussain A; Tian MY; He YR; Lei YY J Invertebr Pathol; 2010 Jul; 104(3):166-71. PubMed ID: 20233596 [TBL] [Abstract][Full Text] [Related]
53. Effect of vacuolar ATPase subunit H (VmaH) on cellular pH, asexual cycle, stress tolerance and virulence in Beauveria bassiana. Zhu J; Zhu XG; Ying SH; Feng MG Fungal Genet Biol; 2017 Jan; 98():52-60. PubMed ID: 28011319 [TBL] [Abstract][Full Text] [Related]
54. A putative α-glucoside transporter gene BbAGT1 contributes to carbohydrate utilization, growth, conidiation and virulence of filamentous entomopathogenic fungus Beauveria bassiana. Wang XX; Ji XP; Li JX; Keyhani NO; Feng MG; Ying SH Res Microbiol; 2013 Jun; 164(5):480-9. PubMed ID: 23499939 [TBL] [Abstract][Full Text] [Related]
55. A novel mitochondrial membrane protein, Ohmm, limits fungal oxidative stress resistance and virulence in the insect fungal pathogen Beauveria bassiana. He Z; Zhang S; Keyhani NO; Song Y; Huang S; Pei Y; Zhang Y Environ Microbiol; 2015 Nov; 17(11):4213-38. PubMed ID: 25403093 [TBL] [Abstract][Full Text] [Related]
56. Volatile organic compounds released by the entomopathogenic fungus Beauveria bassiana. Crespo R; Pedrini N; Juárez MP; Dal Bello GM Microbiol Res; 2008; 163(2):148-51. PubMed ID: 16733086 [TBL] [Abstract][Full Text] [Related]
57. Correlation of cell surface proteins of distinct Beauveria bassiana cell types and adaption to varied environment and interaction with the host insect. Yang Z; Jiang H; Zhao X; Lu Z; Luo Z; Li X; Zhao J; Zhang Y Fungal Genet Biol; 2017 Feb; 99():13-25. PubMed ID: 28040530 [TBL] [Abstract][Full Text] [Related]
58. Generating thermotolerant colonies by pairing Beauveria bassiana isolates. Kim JS; Skinner M; Gouli S; Parker BL FEMS Microbiol Lett; 2011 Nov; 324(2):165-72. PubMed ID: 22092818 [TBL] [Abstract][Full Text] [Related]
59. Involvement of Epidermis Cell Proliferation in Defense Against Huang W; Tang R; Li S; Zhang Y; Chen R; Gong L; Wei X; Tang Y; Liu Q; Geng L; Pan G; Beerntsen BT; Ling E Front Immunol; 2021; 12():741797. PubMed ID: 34603328 [TBL] [Abstract][Full Text] [Related]
60. [Phenotypic and genetic changes of entomopathogenic ascomycete Beauveria Bassiana under passaging through various hosts]. Kryukov VY; Rotskaya UN; Yaroslavtseva ON; Elisaphenko EA; Duisembekov BA; Glupov VV Parazitologiia; 2017; 51(1):3-14. PubMed ID: 29401571 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]