BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29801806)

  • 1. Activity of the α-glucoside transporter Agt1 in Saccharomyces cerevisiae cells during dehydration-rehydration events.
    Kulikova-Borovikova D; Lisi S; Dauss E; Alamae T; Buzzini P; Hallsworth JE; Rapoport A
    Fungal Biol; 2018 Jun; 122(6):613-620. PubMed ID: 29801806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Thr505 and Ser557 residues of the AGT1-encoded alpha-glucoside transporter are critical for maltotriose transport in Saccharomyces cerevisiae.
    Smit A; Moses SG; Pretorius IS; Cordero Otero RR
    J Appl Microbiol; 2008 Apr; 104(4):1103-11. PubMed ID: 18179544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Key amino acid residues of the AGT1 permease required for maltotriose consumption and fermentation by Saccharomyces cerevisiae.
    Trichez D; Knychala MM; Figueiredo CM; Alves SL; da Silva MA; Miletti LC; de Araujo PS; Stambuk BU
    J Appl Microbiol; 2019 Feb; 126(2):580-594. PubMed ID: 30466168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of AGT1 encoding a general alpha-glucoside transporter from Saccharomyces.
    Han EK; Cotty F; Sottas C; Jiang H; Michels CA
    Mol Microbiol; 1995 Sep; 17(6):1093-107. PubMed ID: 8594329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of active alpha-glucoside transport in Saccharomyces cerevisiae.
    Stambuk BU; de Araujo PS
    FEMS Yeast Res; 2001 Apr; 1(1):73-8. PubMed ID: 12702465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The trehalose protective mechanism during thermal stress in Saccharomyces cerevisiae: the roles of Ath1 and Agt1.
    Magalhães RSS; Popova B; Braus GH; Outeiro TF; Eleutherio ECA
    FEMS Yeast Res; 2018 Sep; 18(6):. PubMed ID: 30007297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of regulatory elements in the AGT1 promoter of ale and lager strains of brewer's yeast.
    Vidgren V; Kankainen M; Londesborough J; Ruohonen L
    Yeast; 2011 Aug; 28(8):579-94. PubMed ID: 21755532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular analysis of maltotriose active transport and fermentation by Saccharomyces cerevisiae reveals a determinant role for the AGT1 permease.
    Alves SL; Herberts RA; Hollatz C; Trichez D; Miletti LC; de Araujo PS; Stambuk BU
    Appl Environ Microbiol; 2008 Mar; 74(5):1494-501. PubMed ID: 18203856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colorimetric determination of active alpha-glucoside transport in Saccharomyces cerevisiae.
    Hollatz C; Stambuk BU
    J Microbiol Methods; 2001 Sep; 46(3):253-9. PubMed ID: 11438190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active alpha-glucoside transport in Saccharomyces cerevisiae.
    Stambuk BU; da Silva MA; Panek AD; de Araujo PS
    FEMS Microbiol Lett; 1999 Jan; 170(1):105-10. PubMed ID: 9919658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anhydrobiosis in yeast: is it possible to reach anhydrobiosis for yeast grown in conditions with severe oxygen limitation?
    Rozenfelde L; Rapoport A
    Antonie Van Leeuwenhoek; 2014 Aug; 106(2):211-7. PubMed ID: 24791685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AGT1, encoding an alpha-glucoside transporter involved in uptake and intracellular accumulation of trehalose in Saccharomyces cerevisiae.
    Plourde-Owobi L; Durner S; Parrou JL; Wieczorke R; Goma G; François J
    J Bacteriol; 1999 Jun; 181(12):3830-2. PubMed ID: 10368160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium uptake system Trk2 is crucial for yeast cell viability during anhydrobiosis.
    Borovikova D; Herynkova P; Rapoport A; Sychrova H
    FEMS Microbiol Lett; 2014 Jan; 350(1):28-33. PubMed ID: 24267958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved fermentation performance of a lager yeast after repair of its AGT1 maltose and maltotriose transporter genes.
    Vidgren V; Huuskonen A; Virtanen H; Ruohonen L; Londesborough J
    Appl Environ Microbiol; 2009 Apr; 75(8):2333-45. PubMed ID: 19181838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic improvement of Saccharomyces cerevisiae wine strains for enhancing cell viability after desiccation stress.
    López-Martínez G; Pietrafesa R; Romano P; Cordero-Otero R; Capece A
    Yeast; 2013 Aug; 30(8):319-30. PubMed ID: 23576041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anhydrobiosis in yeast: cell wall mannoproteins are important for yeast Saccharomyces cerevisiae resistance to dehydration.
    Borovikova D; Teparić R; Mrša V; Rapoport A
    Yeast; 2016 Aug; 33(8):347-53. PubMed ID: 27510749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anhydrobiosis in yeasts: Psychrotolerant yeasts are highly resistant to dehydration.
    Khroustalyova G; Giovannitti G; Severini D; Scherbaka R; Turchetti B; Buzzini P; Rapoport A
    Yeast; 2019 May; 36(5):375-379. PubMed ID: 30724392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in Energy Status of
    Kuliešienė N; Žūkienė R; Khroustalyova G; Chang CR; Rapoport A; Daugelavičius R
    Microorganisms; 2021 Feb; 9(2):. PubMed ID: 33669998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain.
    Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):109-15. PubMed ID: 20180115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anhydrobiosis in yeast: role of cortical endoplasmic reticulum protein Ist2 in Saccharomyces cerevisiae cells during dehydration and subsequent rehydration.
    Dauss E; Papoušková K; Sychrová H; Rapoport A
    Antonie Van Leeuwenhoek; 2021 Jul; 114(7):1069-1077. PubMed ID: 33844120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.