BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29802230)

  • 1. Heme redox potentials hold the key to reactivity differences between nitric oxide reductase and heme-copper oxidase.
    Bhagi-Damodaran A; Reed JH; Zhu Q; Shi Y; Hosseinzadeh P; Sandoval BA; Harnden KA; Wang S; Sponholtz MR; Mirts EN; Dwaraknath S; Zhang Y; Moënne-Loccoz P; Lu Y
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6195-6200. PubMed ID: 29802230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights Into How Heme Reduction Potentials Modulate Enzymatic Activities of a Myoglobin-based Functional Oxidase.
    Bhagi-Damodaran A; Kahle M; Shi Y; Zhang Y; Ädelroth P; Lu Y
    Angew Chem Int Ed Engl; 2017 Jun; 56(23):6622-6626. PubMed ID: 28470988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic tuning of heme redox potentials and its effects on O2 reduction rates in a designed oxidase in myoglobin.
    Bhagi-Damodaran A; Petrik ID; Marshall NM; Robinson H; Lu Y
    J Am Chem Soc; 2014 Aug; 136(34):11882-5. PubMed ID: 25076049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A low-redox potential heme in the dinuclear center of bacterial nitric oxide reductase: implications for the evolution of energy-conserving heme-copper oxidases.
    Grönberg KL; Roldán MD; Prior L; Butland G; Cheesman MR; Richardson DJ; Spiro S; Thomson AJ; Watmough NJ
    Biochemistry; 1999 Oct; 38(42):13780-6. PubMed ID: 10529222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Biosynthetic Models of Heme-Copper Oxidase and Nitric Oxide Reductase in Myoglobin to Elucidate Structural Features Responsible for Enzymatic Activities.
    Bhagi-Damodaran A; Petrik I; Lu Y
    Isr J Chem; 2016 Oct; 56():773-790. PubMed ID: 27994254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type.
    Zumft WG
    J Inorg Biochem; 2005 Jan; 99(1):194-215. PubMed ID: 15598502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structural and functional perspective on the evolution of the heme-copper oxidases.
    Sharma V; Wikström M
    FEBS Lett; 2014 Nov; 588(21):3787-92. PubMed ID: 25261254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton and electron pathways in the bacterial nitric oxide reductase.
    Hendriks JH; Jasaitis A; Saraste M; Verkhovsky MI
    Biochemistry; 2002 Feb; 41(7):2331-40. PubMed ID: 11841226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conserved evolutionary units in the heme-copper oxidase superfamily revealed by novel homologous protein families.
    Pei J; Li W; Kinch LN; Grishin NV
    Protein Sci; 2014 Sep; 23(9):1220-34. PubMed ID: 24931479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic redox behavior of the heme centers of cbb3 heme-copper oxygen reductase from Bradyrhizobium japonicum.
    Veríssimo AF; Sousa FL; Baptista AM; Teixeira M; Pereira MM
    Biochemistry; 2007 Nov; 46(46):13245-53. PubMed ID: 17963363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active-site models of bacterial nitric oxide reductase featuring tris-histidyl and glutamic acid mimics: influence of a carboxylate ligand on Fe(B) binding and the heme Fe/Fe(B) redox potential.
    Collman JP; Yan YL; Lei J; Dinolfo PH
    Inorg Chem; 2006 Sep; 45(19):7581-3. PubMed ID: 16961346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
    Mirts EN; Bhagi-Damodaran A; Lu Y
    Acc Chem Res; 2019 Apr; 52(4):935-944. PubMed ID: 30912643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An electrogenic nitric oxide reductase.
    Al-Attar S; de Vries S
    FEBS Lett; 2015 Jul; 589(16):2050-7. PubMed ID: 26149211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Outer-Sphere Side Chain Substitutions on the Fate of the trans Iron-Nitrosyl Dimer in Heme/Nonheme Engineered Myoglobins (Fe(B)Mbs): Insights into the Mechanism of Denitrifying NO Reductases.
    Matsumura H; Chakraborty S; Reed J; Lu Y; Moënne-Loccoz P
    Biochemistry; 2016 Apr; 55(14):2091-9. PubMed ID: 27003474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate binding and the catalytic reactions in cbb3-type oxidases: the lipid membrane modulates ligand binding.
    Huang Y; Reimann J; Singh LM; Adelroth P
    Biochim Biophys Acta; 2010; 1797(6-7):724-31. PubMed ID: 20307490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism for oxygen reduction in cytochrome c dependent nitric oxide reductase (cNOR) as obtained from a combination of theoretical and experimental results.
    Blomberg MRA; Ädelroth P
    Biochim Biophys Acta Bioenerg; 2017 Nov; 1858(11):884-894. PubMed ID: 28801051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The superfamily of heme-copper oxygen reductases: types and evolutionary considerations.
    Sousa FL; Alves RJ; Ribeiro MA; Pereira-Leal JB; Teixeira M; Pereira MM
    Biochim Biophys Acta; 2012 Apr; 1817(4):629-37. PubMed ID: 22001780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the Two Metals in the Active Sites of Heme Copper Oxidases-A Study of NO Reduction in
    Blomberg MRA
    Inorg Chem; 2020 Aug; 59(16):11542-11553. PubMed ID: 32799475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of metal ions in the CuB center on the redox properties of heme in heme-copper oxidases: spectroelectrochemical studies of an engineered heme-copper center in myoglobin.
    Zhao X; Yeung N; Wang Z; Guo Z; Lu Y
    Biochemistry; 2005 Feb; 44(4):1210-4. PubMed ID: 15667214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of O
    Blomberg MRA
    Chem Soc Rev; 2020 Oct; 49(20):7301-7330. PubMed ID: 33006348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.