These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 29802275)
1. One-way edge modes in a photonic crystal of semiconductor at terahertz frequencies. He L; Shen Q; Xu J; You Y; Yu T; Shen L; Deng X Sci Rep; 2018 May; 8(1):8165. PubMed ID: 29802275 [TBL] [Abstract][Full Text] [Related]
2. One-way edge mode in a gyromagnetic photonic crystal slab. Liu K; Shen L; He S Opt Lett; 2012 Oct; 37(19):4110-2. PubMed ID: 23027295 [TBL] [Abstract][Full Text] [Related]
3. Backscattering-immune one-way surface magnetoplasmons at terahertz frequencies. Shen L; You Y; Wang Z; Deng X Opt Express; 2015 Jan; 23(2):950-62. PubMed ID: 25835854 [TBL] [Abstract][Full Text] [Related]
4. Impact of photonic crystal boundary shape on the existence of one-way edge mode. Lu J; Shen L; Deng X; Li X; Zheng X Appl Opt; 2013 Jul; 52(21):5216-20. PubMed ID: 23872769 [TBL] [Abstract][Full Text] [Related]
5. Stopping terahertz radiation without backscattering over a broad band. Shen L; Zheng X; Deng X Opt Express; 2015 May; 23(9):11790-8. PubMed ID: 25969270 [TBL] [Abstract][Full Text] [Related]
6. Optical properties of three-dimensional woodpile photonic crystals composed of circular cylinders with planar defect structures. Chung SH; Yang JY Appl Opt; 2011 Dec; 50(36):6657-66. PubMed ID: 22193196 [TBL] [Abstract][Full Text] [Related]
8. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies. Degirmenci E; Landais P Appl Opt; 2013 Oct; 52(30):7367-75. PubMed ID: 24216592 [TBL] [Abstract][Full Text] [Related]
9. Efficient light amplification in low gain materials due to a photonic band edge effect. Ondič L; Pelant I Opt Express; 2012 Mar; 20(7):7071-80. PubMed ID: 22453388 [TBL] [Abstract][Full Text] [Related]
10. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Wang Z; Chong YD; Joannopoulos JD; Soljacić M Phys Rev Lett; 2008 Jan; 100(1):013905. PubMed ID: 18232767 [TBL] [Abstract][Full Text] [Related]
11. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs. Williamson IA; Mousavi SH; Wang Z Sci Rep; 2016 May; 6():25301. PubMed ID: 27143314 [TBL] [Abstract][Full Text] [Related]
12. Degeneracy analysis for a supercell of a photonic crystal and its application to the creation of band gaps. Wu L; Zhuang F; He S Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026612. PubMed ID: 12636846 [TBL] [Abstract][Full Text] [Related]
13. Characteristics of strain-sensitive photonic crystal cavities in a flexible substrate. No YS; Choi JH; Kim KH; Park HG Opt Express; 2016 Nov; 24(23):26119-26128. PubMed ID: 27857349 [TBL] [Abstract][Full Text] [Related]
14. Wideband trapping of light by edge states in honeycomb photonic crystals. Ouyang C; Han D; Zhao F; Hu X; Liu X; Zi J J Phys Condens Matter; 2012 Dec; 24(49):492203. PubMed ID: 23160061 [TBL] [Abstract][Full Text] [Related]
16. Terahertz photonic states in semiconductor-graphene cylinder structures. Yuan Y; Yao J; Xu W Opt Lett; 2012 Mar; 37(5):960-2. PubMed ID: 22378452 [TBL] [Abstract][Full Text] [Related]
17. A GaN photonic crystal membrane laser. Lin CH; Wang JY; Chen CY; Shen KC; Yeh DM; Kiang YW; Yang CC Nanotechnology; 2011 Jan; 22(2):025201. PubMed ID: 21135479 [TBL] [Abstract][Full Text] [Related]
18. Direct determination of photonic band structure for waveguiding modes in two-dimensional photonic crystals. Inoue S; Yokoyama S; Aoyagi Y Opt Express; 2008 Feb; 16(4):2461-8. PubMed ID: 18542325 [TBL] [Abstract][Full Text] [Related]
19. Sharp angular and unidirectional filter based on accidental degeneracy between two twisted Weyl semimetal-based defect modes in a one-dimensional photonic crystal. Zhang R; Liu G; Hong S; He Y; Yin C; Xu K Opt Lett; 2023 Jul; 48(13):3527-3530. PubMed ID: 37390172 [TBL] [Abstract][Full Text] [Related]