These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 29802511)
1. Cognitive Assessment Prediction in Alzheimer's Disease by Multi-Layer Multi-Target Regression. Wang X; Zhen X; Li Q; Shen D; Huang H Neuroinformatics; 2018 Oct; 16(3-4):285-294. PubMed ID: 29802511 [TBL] [Abstract][Full Text] [Related]
2. Multi-Target Regression via Robust Low-Rank Learning. Zhen X; Yu M; He X; Li S IEEE Trans Pattern Anal Mach Intell; 2018 Feb; 40(2):497-504. PubMed ID: 28368816 [TBL] [Abstract][Full Text] [Related]
3. Linearized and Kernelized Sparse Multitask Learning for Predicting Cognitive Outcomes in Alzheimer's Disease. Liu X; Cao P; Yang J; Zhao D Comput Math Methods Med; 2018; 2018():7429782. PubMed ID: 29623103 [TBL] [Abstract][Full Text] [Related]
4. Fused Group Lasso Regularized Multi-Task Feature Learning and Its Application to the Cognitive Performance Prediction of Alzheimer's Disease. Liu X; Cao P; Wang J; Kong J; Zhao D Neuroinformatics; 2019 Apr; 17(2):271-294. PubMed ID: 30284672 [TBL] [Abstract][Full Text] [Related]
5. Exploiting task relationships for Alzheimer's disease cognitive score prediction via multi-task learning. Liang W; Zhang K; Cao P; Liu X; Yang J; Zaiane OR Comput Biol Med; 2023 Jan; 152():106367. PubMed ID: 36516575 [TBL] [Abstract][Full Text] [Related]
6. Multitarget Sparse Latent Regression. Zhen X; Yu M; Zheng F; Nachum IB; Bhaduri M; Laidley D; Li S IEEE Trans Neural Netw Learn Syst; 2018 May; 29(5):1575-1586. PubMed ID: 28328512 [TBL] [Abstract][Full Text] [Related]
7. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease. Spasov S; Passamonti L; Duggento A; Liò P; Toschi N; Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174 [TBL] [Abstract][Full Text] [Related]
8. Generalized fused group lasso regularized multi-task feature learning for predicting cognitive outcomes in Alzheimers disease. Cao P; Liu X; Liu H; Yang J; Zhao D; Huang M; Zaiane O Comput Methods Programs Biomed; 2018 Aug; 162():19-45. PubMed ID: 29903486 [TBL] [Abstract][Full Text] [Related]
9. Multi-Domain Transfer Learning for Early Diagnosis of Alzheimer's Disease. Cheng B; Liu M; Shen D; Li Z; Zhang D; Neuroinformatics; 2017 Apr; 15(2):115-132. PubMed ID: 27928657 [TBL] [Abstract][Full Text] [Related]
10. Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm. Yan J; Li T; Wang H; Huang H; Wan J; Nho K; Kim S; Risacher SL; Saykin AJ; Shen L; Neurobiol Aging; 2015 Jan; 36 Suppl 1():S185-93. PubMed ID: 25444599 [TBL] [Abstract][Full Text] [Related]
11. Rethinking modeling Alzheimer's disease progression from a multi-task learning perspective with deep recurrent neural network. Liang W; Zhang K; Cao P; Liu X; Yang J; Zaiane O Comput Biol Med; 2021 Nov; 138():104935. PubMed ID: 34656869 [TBL] [Abstract][Full Text] [Related]
12. A Robust Reduced Rank Graph Regression Method for Neuroimaging Genetic Analysis. Zhu X; Zhang W; Fan Y; Neuroinformatics; 2018 Oct; 16(3-4):351-361. PubMed ID: 29907892 [TBL] [Abstract][Full Text] [Related]
13. Feature selective temporal prediction of Alzheimer's disease progression using hippocampus surface morphometry. Tsao S; Gajawelli N; Zhou J; Shi J; Ye J; Wang Y; Leporé N Brain Behav; 2017 Jul; 7(7):e00733. PubMed ID: 28729939 [TBL] [Abstract][Full Text] [Related]
14. A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer's disease. El-Sappagh S; Alonso JM; Islam SMR; Sultan AM; Kwak KS Sci Rep; 2021 Jan; 11(1):2660. PubMed ID: 33514817 [TBL] [Abstract][Full Text] [Related]
15. Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer's disease patients: From the alzheimer's disease neuroimaging initiative (ADNI) database. Dimitriadis SI; Liparas D; Tsolaki MN; J Neurosci Methods; 2018 May; 302():14-23. PubMed ID: 29269320 [TBL] [Abstract][Full Text] [Related]
16. Low-rank sparse feature selection with incomplete labels for Alzheimer's disease progression prediction. Chen Z; Liu Y; Zhang Y; Jin R; Tao J; Chen L Comput Biol Med; 2022 Aug; 147():105705. PubMed ID: 35717935 [TBL] [Abstract][Full Text] [Related]
17. Identifying the neuroanatomical basis of cognitive impairment in Alzheimer's disease by correlation- and nonlinearity-aware sparse Bayesian learning. Wan J; Zhang Z; Rao BD; Fang S; Yan J; Saykin AJ; Shen L IEEE Trans Med Imaging; 2014 Jul; 33(7):1475-87. PubMed ID: 24710828 [TBL] [Abstract][Full Text] [Related]
18. Group Guided Fused Laplacian Sparse Group Lasso for Modeling Alzheimer's Disease Progression. Liu X; Wang J; Ren F; Kong J Comput Math Methods Med; 2020; 2020():4036560. PubMed ID: 32104201 [TBL] [Abstract][Full Text] [Related]
19. Genotype-phenotype association study via new multi-task learning model. Huo Z; Shen D; Huang H Pac Symp Biocomput; 2018; 23():353-364. PubMed ID: 29218896 [TBL] [Abstract][Full Text] [Related]
20. Longitudinal Exposure-Response Modeling of Multiple Indicators of Alzheimer's Disease Progression. Polhamus DG; Dolton MJ; Rogers JA; Honigberg L; Jin JY; Quartino A J Prev Alzheimers Dis; 2023; 10(2):212-222. PubMed ID: 36946448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]