These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
422 related articles for article (PubMed ID: 2980253)
1. A comparative biomechanical study of spinal fixation using the combination spinal rod-plate and transpedicular screw fixation system. Chang KW; Dewei Z; McAfee PC; Warden KE; Farey ID; Gurr KR J Spinal Disord; 1988; 1(4):257-66. PubMed ID: 2980253 [TBL] [Abstract][Full Text] [Related]
2. Biomechanical analysis of anterior and posterior instrumentation systems after corpectomy. A calf-spine model. Gurr KR; McAfee PC; Shih CM J Bone Joint Surg Am; 1988 Sep; 70(8):1182-91. PubMed ID: 3417703 [TBL] [Abstract][Full Text] [Related]
3. The biomechanical effects of spondylolysis and its treatment. Mihara H; Onari K; Cheng BC; David SM; Zdeblick TA Spine (Phila Pa 1976); 2003 Feb; 28(3):235-8. PubMed ID: 12567023 [TBL] [Abstract][Full Text] [Related]
4. Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study. Huang P; Gupta MC; Sarigul-Klijn N; Hazelwood S Spine J; 2006; 6(6):648-58. PubMed ID: 17088195 [TBL] [Abstract][Full Text] [Related]
5. Preclinical testing of a wedge-rod system for fusionless correction of scoliosis. Betz RR; Cunningham B; Selgrath C; Drewry T; Sherman MC Spine (Phila Pa 1976); 2003 Oct; 28(20):S275-8. PubMed ID: 14560203 [TBL] [Abstract][Full Text] [Related]
6. Biomechanical analysis of posterior instrumentation systems after decompressive laminectomy. An unstable calf-spine model. Gurr KR; McAfee PC; Shih CM J Bone Joint Surg Am; 1988 Jun; 70(5):680-91. PubMed ID: 3392061 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical comparison of cervical spine reconstructive techniques after a multilevel corpectomy of the cervical spine. Singh K; Vaccaro AR; Kim J; Lorenz EP; Lim TH; An HS Spine (Phila Pa 1976); 2003 Oct; 28(20):2352-8; discussion 2358. PubMed ID: 14560082 [TBL] [Abstract][Full Text] [Related]
8. Anterior spinal fixators. A biomechanical in vitro study. Zdeblick TA; Warden KE; Zou D; McAfee PC; Abitbol JJ Spine (Phila Pa 1976); 1993 Mar; 18(4):513-7. PubMed ID: 8470014 [TBL] [Abstract][Full Text] [Related]
10. Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems. Brodke DS; Gollogly S; Bachus KN; Alexander Mohr R; Nguyen BK Spine (Phila Pa 1976); 2003 Aug; 28(16):1794-801. PubMed ID: 12923465 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical evaluation of conventional internal contemporary spinal fixation techniques used for stabilization of complete sacroiliac joint separation: a 3-dimensional unilaterally isolated experimental stiffness study. Korovessis PG; Magnissalis EA; Deligianni D Spine (Phila Pa 1976); 2006 Dec; 31(25):E941-51. PubMed ID: 17139210 [TBL] [Abstract][Full Text] [Related]
12. New rod-plate anterior instrumentation for thoracolumbar/lumbar scoliosis: biomechanical evaluation compared with dual-rod and single-rod with structural interbody support. Zhang H; Johnston CE; Pierce WA; Ashman RB; Bronson DG; Haideri NF Spine (Phila Pa 1976); 2006 Dec; 31(25):E934-40. PubMed ID: 17139209 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical evaluation of spinal fixation devices. Part III. Stability provided by six spinal fixation devices and interbody bone graft. Abumi K; Panjabi MM; Duranceau J Spine (Phila Pa 1976); 1989 Nov; 14(11):1249-55. PubMed ID: 2603059 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical effect of the extent of vertebral body fracture on the thoracolumbar spine with pedicle screw fixation: an in vitro study. Wang XY; Dai LY; Xu HZ; Chi YL J Clin Neurosci; 2008 Mar; 15(3):286-90. PubMed ID: 18226530 [TBL] [Abstract][Full Text] [Related]
15. [Biomechanical evaluation of five fixation techniques for the lower cervical spine]. Wang D; Tang T; Huang S; Yang H; Zhu Q; Oyang J Zhonghua Wai Ke Za Zhi; 1999 May; 37(5):301-3. PubMed ID: 11829846 [TBL] [Abstract][Full Text] [Related]
16. Enhancing the stability of anterior lumbar interbody fusion: a biomechanical comparison of anterior plate versus posterior transpedicular instrumentation. Tzermiadianos MN; Mekhail A; Voronov LI; Zook J; Havey RM; Renner SM; Carandang G; Abjornson C; Patwardhan AG Spine (Phila Pa 1976); 2008 Jan; 33(2):E38-43. PubMed ID: 18197089 [TBL] [Abstract][Full Text] [Related]
17. Biomechanical evaluation of short-segment posterior instrumentation with and without crosslinks in a human cadaveric unstable thoracolumbar burst fracture model. Wahba GM; Bhatia N; Bui CN; Lee KH; Lee TQ Spine (Phila Pa 1976); 2010 Feb; 35(3):278-85. PubMed ID: 20075769 [TBL] [Abstract][Full Text] [Related]
18. Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion. Cheng BC; Gordon J; Cheng J; Welch WC Spine (Phila Pa 1976); 2007 Nov; 32(23):2551-7. PubMed ID: 17978653 [TBL] [Abstract][Full Text] [Related]
19. Static and dynamic analysis of five anterior instrumentation systems for thoracolumbar scoliosis. Shimamoto N; Kotani Y; Shono Y; Kadoya K; Abumi K; Minami A; Kaneda K Spine (Phila Pa 1976); 2003 Aug; 28(15):1678-85. PubMed ID: 12897491 [TBL] [Abstract][Full Text] [Related]
20. Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaveric model. Cunningham BW; Gordon JD; Dmitriev AE; Hu N; McAfee PC Spine (Phila Pa 1976); 2003 Oct; 28(20):S110-7. PubMed ID: 14560182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]