BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 29802760)

  • 1. Increasing Cell Seeding Density Improves Elastin Expression and Mechanical Properties in Collagen Gel-Based Scaffolds Cellularized with Smooth Muscle Cells.
    Camasão DB; Pezzoli D; Loy C; Kumra H; Levesque L; Reinhardt DP; Candiani G; Mantovani D
    Biotechnol J; 2019 Mar; 14(3):e1700768. PubMed ID: 29802760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibronectin promotes elastin deposition, elasticity and mechanical strength in cellularised collagen-based scaffolds.
    Pezzoli D; Di Paolo J; Kumra H; Fois G; Candiani G; Reinhardt DP; Mantovani D
    Biomaterials; 2018 Oct; 180():130-142. PubMed ID: 30036726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastin-like recombinamers in collagen-based tubular gels improve cell-mediated remodeling and viscoelastic properties.
    Camasão DB; González-Pérez M; Palladino S; Alonso M; Rodríguez-Cabello JC; Mantovani D
    Biomater Sci; 2020 Jun; 8(12):3536-3548. PubMed ID: 32478364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of elastin incorporation into electrochemically aligned collagen fibers on mechanical properties and smooth muscle cell phenotype.
    Nguyen TU; Bashur CA; Kishore V
    Biomed Mater; 2016 Mar; 11(2):025008. PubMed ID: 26987364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells.
    Ryan AJ; O'Brien FJ
    Biomaterials; 2015 Dec; 73():296-307. PubMed ID: 26431909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dynamically cultured collagen/cells-incorporated elastic scaffold for small-diameter vascular grafts.
    Park IS; Kim YH; Jung Y; Kim SH; Kim SH
    J Biomater Sci Polym Ed; 2012; 23(14):1807-20. PubMed ID: 21943800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering.
    Grover CN; Cameron RE; Best SM
    J Mech Behav Biomed Mater; 2012 Jun; 10():62-74. PubMed ID: 22520419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of intact elastin scaffolds in tissue-engineered collagen-based vascular grafts.
    Berglund JD; Nerem RM; Sambanis A
    Tissue Eng; 2004; 10(9-10):1526-35. PubMed ID: 15588412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of fibrin into a collagen-glycosaminoglycan matrix results in a scaffold with improved mechanical properties and enhanced capacity to resist cell-mediated contraction.
    Brougham CM; Levingstone TJ; Jockenhoevel S; Flanagan TC; O'Brien FJ
    Acta Biomater; 2015 Oct; 26():205-14. PubMed ID: 26297884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the importance of flow when utilizing hyaluronan scaffolds for tissue engineering.
    Donegan GC; Hunt JA; Rhodes N
    J Tissue Eng Regen Med; 2010 Feb; 4(2):83-95. PubMed ID: 19937643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures.
    Cummings CL; Gawlitta D; Nerem RM; Stegemann JP
    Biomaterials; 2004 Aug; 25(17):3699-706. PubMed ID: 15020145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrostatic pressure independently increases elastin and collagen co-expression in small-diameter engineered arterial constructs.
    Crapo PM; Wang Y
    J Biomed Mater Res A; 2011 Mar; 96(4):673-81. PubMed ID: 21268239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical fabrication of a biomimetic elastin-containing bi-layered scaffold for vascular tissue engineering.
    Nguyen TU; Shojaee M; Bashur CA; Kishore V
    Biofabrication; 2018 Nov; 11(1):015007. PubMed ID: 30411718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-expression of elastin and collagen leads to highly compliant engineered blood vessels.
    Gao J; Crapo P; Nerem R; Wang Y
    J Biomed Mater Res A; 2008 Jun; 85(4):1120-8. PubMed ID: 18412137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastin and collagen enhances electrospun aligned polyurethane as scaffolds for vascular graft.
    Wong CS; Liu X; Xu Z; Lin T; Wang X
    J Mater Sci Mater Med; 2013 Aug; 24(8):1865-74. PubMed ID: 23625321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of human umbilical cord vein CD146+ perivascular cell origined three-dimensional vascular construct.
    Gökçinar-Yagci B; Yersal N; Korkusuz P; Çelebi-Saltik B
    Microvasc Res; 2018 Jul; 118():101-112. PubMed ID: 29550275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of an elastic decellularized tendon-derived scaffold for the vascular tissue engineering application.
    Ghazanfari S; Alberti KA; Xu Q; Khademhosseini A
    J Biomed Mater Res A; 2019 Jun; 107(6):1225-1234. PubMed ID: 30684384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscoelastic properties of multi-layered cellularized vascular tissues fabricated from collagen gel.
    Seifu DG; Meghezi S; Unsworth L; Mequanint K; Mantovani D
    J Mech Behav Biomed Mater; 2018 Apr; 80():155-163. PubMed ID: 29427931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue engineering of blood vessels: characterization of smooth-muscle cells for culturing on collagen-and-elastin-based scaffolds.
    Buijtenhuijs P; Buttafoco L; Poot AA; Daamen WF; van Kuppevelt TH; Dijkstra PJ; de Vos RA; Sterk LM; Geelkerken BR; Feijen J; Vermes I
    Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):141-9. PubMed ID: 15032734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogels for lung tissue engineering: Biomechanical properties of thin collagen-elastin constructs.
    Dunphy SE; Bratt JA; Akram KM; Forsyth NR; El Haj AJ
    J Mech Behav Biomed Mater; 2014 Oct; 38():251-9. PubMed ID: 24809968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.