These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
503 related articles for article (PubMed ID: 29803402)
1. Development of polyhydroxyalkanoates production from waste feedstocks and applications. Pakalapati H; Chang CK; Show PL; Arumugasamy SK; Lan JC J Biosci Bioeng; 2018 Sep; 126(3):282-292. PubMed ID: 29803402 [TBL] [Abstract][Full Text] [Related]
2. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria. Nikodinovic-Runic J; Guzik M; Kenny ST; Babu R; Werker A; O Connor KE Adv Appl Microbiol; 2013; 84():139-200. PubMed ID: 23763760 [TBL] [Abstract][Full Text] [Related]
3. Formation of polyhydroxyalkanoates using agro and industrial waste as a substrate - a review. Kanzariya R; Gautam A; Parikh S; Shah M; Gautam S Biotechnol Genet Eng Rev; 2023 Oct; 39(2):897-936. PubMed ID: 36641590 [TBL] [Abstract][Full Text] [Related]
4. The General Composition of Polyhydroxyalkanoates and Factors that Influence their Production and Biosynthesis. Ene N; Savoiu VG; Spiridon M; Paraschiv CI; Vamanu E Curr Pharm Des; 2023; 29(39):3089-3102. PubMed ID: 38099526 [TBL] [Abstract][Full Text] [Related]
5. A review on production of polyhydroxyalkanoate (PHA) biopolyesters by thermophilic microbes using waste feedstocks. Chavan S; Yadav B; Tyagi RD; Drogui P Bioresour Technol; 2021 Dec; 341():125900. PubMed ID: 34523565 [TBL] [Abstract][Full Text] [Related]
6. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Koutinas AA; Vlysidis A; Pleissner D; Kopsahelis N; Lopez Garcia I; Kookos IK; Papanikolaou S; Kwan TH; Lin CS Chem Soc Rev; 2014 Apr; 43(8):2587-627. PubMed ID: 24424298 [TBL] [Abstract][Full Text] [Related]
7. Strategies for PHA production by mixed cultures and renewable waste materials. Serafim LS; Lemos PC; Albuquerque MG; Reis MA Appl Microbiol Biotechnol; 2008 Dec; 81(4):615-28. PubMed ID: 19002455 [TBL] [Abstract][Full Text] [Related]
8. Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives. De Donno Novelli L; Moreno Sayavedra S; Rene ER Bioresour Technol; 2021 Jul; 331():124985. PubMed ID: 33819906 [TBL] [Abstract][Full Text] [Related]
9. Optimization and characterization of PHA from isolate Pannonibacter phragmitetus ERC8 using glycerol waste. Ray S; Prajapati V; Patel K; Trivedi U Int J Biol Macromol; 2016 May; 86():741-9. PubMed ID: 26851207 [TBL] [Abstract][Full Text] [Related]
10. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. Koller M; Maršálek L; de Sousa Dias MM; Braunegg G N Biotechnol; 2017 Jul; 37(Pt A):24-38. PubMed ID: 27184617 [TBL] [Abstract][Full Text] [Related]
11. Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. Li M; Wilkins MR Int J Biol Macromol; 2020 Aug; 156():691-703. PubMed ID: 32315680 [TBL] [Abstract][Full Text] [Related]
12. Methodological issues in life cycle assessment of mixed-culture polyhydroxyalkanoate production utilising waste as feedstock. Heimersson S; Morgan-Sagastume F; Peters GM; Werker A; Svanström M N Biotechnol; 2014 Jun; 31(4):383-93. PubMed ID: 24121250 [TBL] [Abstract][Full Text] [Related]
13. Recent developments in Polyhydroxyalkanoates (PHAs) production - A review. Sabapathy PC; Devaraj S; Meixner K; Anburajan P; Kathirvel P; Ravikumar Y; Zabed HM; Qi X Bioresour Technol; 2020 Jun; 306():123132. PubMed ID: 32220472 [TBL] [Abstract][Full Text] [Related]
14. Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels. Valentino F; Karabegovic L; Majone M; Morgan-Sagastume F; Werker A Water Res; 2015 Jun; 77():49-63. PubMed ID: 25846983 [TBL] [Abstract][Full Text] [Related]
15. Fruit pomace and waste frying oil as sustainable resources for the bioproduction of medium-chain-length polyhydroxyalkanoates. Follonier S; Goyder MS; Silvestri AC; Crelier S; Kalman F; Riesen R; Zinn M Int J Biol Macromol; 2014 Nov; 71():42-52. PubMed ID: 24882726 [TBL] [Abstract][Full Text] [Related]
16. Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review. Mannina G; Presti D; Montiel-Jarillo G; Carrera J; Suárez-Ojeda ME Bioresour Technol; 2020 Feb; 297():122478. PubMed ID: 31810735 [TBL] [Abstract][Full Text] [Related]
17. Bio-conversion of organic wastes towards polyhydroxyalkanoates. Kuang ZY; Yang H; Shen SW; Lin YN; Sun SW; Neureiter M; Yue HT; Ye JW Biotechnol Notes; 2023; 4():118-126. PubMed ID: 39416913 [TBL] [Abstract][Full Text] [Related]
18. A review on polyhydroxyalkanoate production from agricultural waste Biomass: Development, Advances, circular Approach, and challenges. Wang J; Liu S; Huang J; Qu Z Bioresour Technol; 2021 Dec; 342():126008. PubMed ID: 34592618 [TBL] [Abstract][Full Text] [Related]
19. Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: Feast and famine regime and uncoupled carbon and nitrogen availabilities. Oliveira CS; Silva CE; Carvalho G; Reis MA N Biotechnol; 2017 Jul; 37(Pt A):69-79. PubMed ID: 27793692 [TBL] [Abstract][Full Text] [Related]
20. Polyhydroxyalkanoates (PHA) production from phenol in an acclimated consortium: Batch study and impacts of operational conditions. Zhang Y; Wusiman A; Liu X; Wan C; Lee DJ; Tay J J Biotechnol; 2018 Feb; 267():36-44. PubMed ID: 29305323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]