BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 29803450)

  • 1. Evaluation of butyrylcholinesterase inhibitory activity by chlorogenic acids and coffee extracts assed in ITC and docking simulation models.
    Budryn G; Grzelczyk J; Jaśkiewicz A; Żyżelewicz D; Pérez-Sánchez H; Cerón-Carrasco JP
    Food Res Int; 2018 Jul; 109():268-277. PubMed ID: 29803450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Inhibiting Butyrylcholinesterase Activity Using Fractionated Coffee Extracts Digested In Vitro in Gastrointestinal Tract: Docking Simulation and Calorimetric and Studies.
    Grzelczyk J; Szwajgier D; Baranowska-Wójcik E; Pérez-Sánchez H; Carmena-Bargueño M; Sosnowska B; Budryn G
    Nutrients; 2023 May; 15(10):. PubMed ID: 37242249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of roasting on the formation of chlorogenic acid lactones in coffee.
    Farah A; de Paulis T; Trugo LC; Martin PR
    J Agric Food Chem; 2005 Mar; 53(5):1505-13. PubMed ID: 15740032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pteryxin - A promising butyrylcholinesterase-inhibiting coumarin derivative from Mutellina purpurea.
    Orhan IE; Senol FS; Shekfeh S; Skalicka-Wozniak K; Banoglu E
    Food Chem Toxicol; 2017 Nov; 109(Pt 2):970-974. PubMed ID: 28286309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory activities of major anthraquinones and other constituents from Cassia obtusifolia against β-secretase and cholinesterases.
    Jung HA; Ali MY; Jung HJ; Jeong HO; Chung HY; Choi JS
    J Ethnopharmacol; 2016 Sep; 191():152-160. PubMed ID: 27321278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of roasting conditions in the level of chlorogenic acid content in coffee beans: correlation with coffee acidity.
    Moon JK; Yoo HS; Shibamoto T
    J Agric Food Chem; 2009 Jun; 57(12):5365-9. PubMed ID: 19530715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of spent coffee obtained from the most common coffeemakers as a source of hydrophilic bioactive compounds.
    Bravo J; Juániz I; Monente C; Caemmerer B; Kroh LW; De Peña MP; Cid C
    J Agric Food Chem; 2012 Dec; 60(51):12565-73. PubMed ID: 23214450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical scheme for liquid chromatography/multi-stage spectrometric identification of 3,4,5-triacyl chlorogenic acids in green Robusta coffee beans.
    Jaiswal R; Kuhnert N
    Rapid Commun Mass Spectrom; 2010 Aug; 24(15):2283-94. PubMed ID: 20607843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roasting has a distinct effect on the antimutagenic activity of coffee varieties.
    Priftis A; Mitsiou D; Halabalaki M; Ntasi G; Stagos D; Skaltsounis LA; Kouretas D
    Mutat Res Genet Toxicol Environ Mutagen; 2018; 829-830():33-42. PubMed ID: 29704991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of optimum roasting conditions to obtain possible health benefit supplement, antioxidants from coffee beans.
    Sulaiman SF; Moon JK; Shibamoto T
    J Diet Suppl; 2011 Sep; 8(3):293-310. PubMed ID: 22432728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening of raw coffee for thiol binding site precursors using "in bean" model roasting experiments.
    Müller C; Hofmann T
    J Agric Food Chem; 2005 Apr; 53(7):2623-9. PubMed ID: 15796603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison and quantification of chlorogenic acids for differentiation of green Robusta and Arabica coffee beans.
    Badmos S; Lee SH; Kuhnert N
    Food Res Int; 2019 Dec; 126():108544. PubMed ID: 31732084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UHPLC-ESI-QqTOF-MS/MS characterization of minor chlorogenic acids in roasted Coffea arabica from different geographical origin.
    De Rosso M; Colomban S; Flamini R; Navarini L
    J Mass Spectrom; 2018 Sep; 53(9):763-771. PubMed ID: 29974575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of nutritional descriptors of roasting intensity in beverages of Arabica and Robusta coffee beans.
    Bicho NC; Leitão AE; Ramalho JC; De Alvarenga NB; Lidon FC
    Int J Food Sci Nutr; 2011 Dec; 62(8):865-71. PubMed ID: 22032554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of chlorogenic acids to the iron-reducing activity of coffee beverages.
    Moreira DP; Monteiro MC; Ribeiro-Alves M; Donangelo CM; Trugo LC
    J Agric Food Chem; 2005 Mar; 53(5):1399-402. PubMed ID: 15740013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decaffeination and Neuraminidase Inhibitory Activity of Arabica Green Coffee (
    Muchtaridi M; Lestari D; Khairul Ikram NK; Gazzali AM; Hariono M; Wahab HA
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34199752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of roasting degree on the antioxidant activity of different Arabica coffee quality classes.
    Odžaković B; Džinić N; Kukrić Z; Grujić S
    Acta Sci Pol Technol Aliment; 2016; 15(4):409-417. PubMed ID: 28071018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of coffee roasting on the incorporation of phenolic compounds into melanoidins and their relationship with antioxidant activity of the brew.
    Perrone D; Farah A; Donangelo CM
    J Agric Food Chem; 2012 May; 60(17):4265-75. PubMed ID: 22490054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholinesterase inhibitory, anti-amyloidogenic and neuroprotective effect of the medicinal plant Grewia tiliaefolia - An in vitro and in silico study.
    Sheeja Malar D; Beema Shafreen R; Karutha Pandian S; Pandima Devi K
    Pharm Biol; 2017 Dec; 55(1):381-393. PubMed ID: 27931177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the inhibition of monoamine oxidase A by bioactive coffee compounds protecting serotonin degradation.
    Grzelczyk J; Budryn G; Peña-García J; Szwajgier D; Gałązka-Czarnecka I; Oracz J; Pérez-Sánchez H
    Food Chem; 2021 Jun; 348():129108. PubMed ID: 33540300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.