These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Distraction osteogenesis device to estimate the axial stiffness of the callus in Vivo. Mora-Macías J; Reina-Romo E; Domínguez J Med Eng Phys; 2015 Oct; 37(10):969-78. PubMed ID: 26320818 [TBL] [Abstract][Full Text] [Related]
3. Model of the distraction callus tissue behavior during bone transport based in experiments in vivo. Mora-Macías J; Reina-Romo E; Domínguez J J Mech Behav Biomed Mater; 2016 Aug; 61():419-430. PubMed ID: 27111628 [TBL] [Abstract][Full Text] [Related]
4. In Vivo Mechanical Characterization of the Distraction Callus During Bone Consolidation. Mora-Macías J; Reina-Romo E; López-Pliego M; Giráldez-Sánchez MA; Domínguez J Ann Biomed Eng; 2015 Nov; 43(11):2663-74. PubMed ID: 25956927 [TBL] [Abstract][Full Text] [Related]
5. Comparison of methods for assigning the material properties of the distraction callus in computational models. Mora-Macías J; Giráldez-Sánchez MÁ; López M; Domínguez J; Reina-Romo ME Int J Numer Method Biomed Eng; 2019 Sep; 35(9):e3227. PubMed ID: 31197959 [TBL] [Abstract][Full Text] [Related]
6. In vivo study of human mandibular distraction osteogenesis. Part II: Determination of callus mechanical properties. Bonnet AS; Dubois G; Lipinski P; Schouman T Acta Bioeng Biomech; 2013; 15(1):11-8. PubMed ID: 23957392 [TBL] [Abstract][Full Text] [Related]
7. Evolution of relaxation properties of callus tissue during bone transport. Calvo-Gallego JL; Mora-Macías J; Reina-Romo E; Domínguez J; Martínez-Reina J Proc Inst Mech Eng H; 2022 Sep; 236(9):1457-1461. PubMed ID: 35880879 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the mechanical environment during distraction osteogenesis. Waanders NA; Richards M; Steen H; Kuhn JL; Goldstein SA; Goulet JA Clin Orthop Relat Res; 1998 Apr; (349):225-34. PubMed ID: 9584387 [TBL] [Abstract][Full Text] [Related]
9. Novel systems for the application of isolated tensile, compressive, and shearing stimulation of distraction callus tissue. Meyers N; Schülke J; Ignatius A; Claes L PLoS One; 2017; 12(12):e0189432. PubMed ID: 29228043 [TBL] [Abstract][Full Text] [Related]
10. Intramembranous bone formation after callus distraction is augmented by increasing axial compressive strain. Schuelke J; Meyers N; Reitmaier S; Klose S; Ignatius A; Claes L PLoS One; 2018; 13(4):e0195466. PubMed ID: 29624608 [TBL] [Abstract][Full Text] [Related]
12. Mechanobiology of Bone Consolidation During Distraction Osteogenesis: Bone Lengthening Vs. Bone Transport. Blázquez-Carmona P; Mora-Macías J; Morgaz J; Fernández-Sarmiento JA; Domínguez J; Reina-Romo E Ann Biomed Eng; 2021 Apr; 49(4):1209-1221. PubMed ID: 33111968 [TBL] [Abstract][Full Text] [Related]
13. Novel approach to estimate distraction forces in distraction osteogenesis and application in the human lower leg. Bachmeier AT; Euler E; Bader R; Böcker W; Thaller PH J Mech Behav Biomed Mater; 2022 Apr; 128():105133. PubMed ID: 35217291 [TBL] [Abstract][Full Text] [Related]
14. A novel method for lateral callus distraction and its importance for the mechano-biology of bone formation. Claes L; Veeser A; Göckelmann M; Horvath D; Dürselen L; Ignatius A Bone; 2010 Oct; 47(4):712-7. PubMed ID: 20637324 [TBL] [Abstract][Full Text] [Related]
15. Mechanical Influence of Surrounding Soft Tissue on Bone Regeneration Processes: A Bone Lengthening Study. Blázquez-Carmona P; Mora-Macías J; Sanz-Herrera JA; Morgaz J; Navarrete-Calvo R; Domínguez J; Reina-Romo E Ann Biomed Eng; 2021 Feb; 49(2):642-652. PubMed ID: 32808118 [TBL] [Abstract][Full Text] [Related]
16. Stiffness of callus tissue during distraction osteogenesis. Floerkemeier T; Thorey F; Hurschler C; Wellmann M; Witte F; Windhagen H Orthop Traumatol Surg Res; 2010 Apr; 96(2):155-60. PubMed ID: 20417914 [TBL] [Abstract][Full Text] [Related]
17. The influence of compression on the healing of experimental tibial fractures. Sigurdsen U; Reikeras O; Utvag SE Injury; 2011 Oct; 42(10):1152-6. PubMed ID: 20850739 [TBL] [Abstract][Full Text] [Related]
19. Mechanical characterization via nanoindentation of the woven bone developed during bone transport. Mora-Macías J; Pajares A; Miranda P; Domínguez J; Reina-Romo E J Mech Behav Biomed Mater; 2017 Oct; 74():236-244. PubMed ID: 28623826 [TBL] [Abstract][Full Text] [Related]
20. The influence of mechanical environment on bone healing and distraction osteogenesis. Saunders MM; Lee JS Atlas Oral Maxillofac Surg Clin North Am; 2008 Sep; 16(2):147-58. PubMed ID: 18710689 [No Abstract] [Full Text] [Related] [Next] [New Search]