These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 29803781)
1. Statistical selection of biological models for genome-wide association analyses. Bi W; Kang G; Pounds SB Methods; 2018 Aug; 145():67-75. PubMed ID: 29803781 [TBL] [Abstract][Full Text] [Related]
2. A pleiotropy-informed Bayesian false discovery rate adapted to a shared control design finds new disease associations from GWAS summary statistics. Liley J; Wallace C PLoS Genet; 2015 Feb; 11(2):e1004926. PubMed ID: 25658688 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests. Nguyen TT; Huang J; Wu Q; Nguyen T; Li M BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662 [TBL] [Abstract][Full Text] [Related]
4. A powerful statistical framework for generalization testing in GWAS, with application to the HCHS/SOL. Sofer T; Heller R; Bogomolov M; Avery CL; Graff M; North KE; Reiner AP; Thornton TA; Rice K; Benjamini Y; Laurie CC; Kerr KF Genet Epidemiol; 2017 Apr; 41(3):251-258. PubMed ID: 28090672 [TBL] [Abstract][Full Text] [Related]
5. An efficient unified model for genome-wide association studies and genomic selection. Li H; Su G; Jiang L; Bao Z Genet Sel Evol; 2017 Aug; 49(1):64. PubMed ID: 28836943 [TBL] [Abstract][Full Text] [Related]
6. An Empirical Bayes Mixture Model for Effect Size Distributions in Genome-Wide Association Studies. Thompson WK; Wang Y; Schork AJ; Witoelar A; Zuber V; Xu S; Werge T; Holland D; ; Andreassen OA; Dale AM PLoS Genet; 2015 Dec; 11(12):e1005717. PubMed ID: 26714184 [TBL] [Abstract][Full Text] [Related]
7. e-GRASP: an integrated evolutionary and GRASP resource for exploring disease associations. Karim S; NourEldin HF; Abusamra H; Salem N; Alhathli E; Dudley J; Sanderford M; Scheinfeldt LB; Chaudhary AG; Al-Qahtani MH; Kumar S BMC Genomics; 2016 Oct; 17(Suppl 9):770. PubMed ID: 27766955 [TBL] [Abstract][Full Text] [Related]
8. Multiple testing in genome-wide association studies via hidden Markov models. Wei Z; Sun W; Wang K; Hakonarson H Bioinformatics; 2009 Nov; 25(21):2802-8. PubMed ID: 19654115 [TBL] [Abstract][Full Text] [Related]
9. GW-SEM: A Statistical Package to Conduct Genome-Wide Structural Equation Modeling. Verhulst B; Maes HH; Neale MC Behav Genet; 2017 May; 47(3):345-359. PubMed ID: 28299468 [TBL] [Abstract][Full Text] [Related]
10. SCOPA and META-SCOPA: software for the analysis and aggregation of genome-wide association studies of multiple correlated phenotypes. Mägi R; Suleimanov YV; Clarke GM; Kaakinen M; Fischer K; Prokopenko I; Morris AP BMC Bioinformatics; 2017 Jan; 18(1):25. PubMed ID: 28077070 [TBL] [Abstract][Full Text] [Related]
11. A rank-based normalization method with the fully adjusted full-stage procedure in genetic association studies. Chien LC PLoS One; 2020; 15(6):e0233847. PubMed ID: 32559184 [TBL] [Abstract][Full Text] [Related]
12. Large-scale genome-wide enrichment analyses identify new trait-associated genes and pathways across 31 human phenotypes. Zhu X; Stephens M Nat Commun; 2018 Oct; 9(1):4361. PubMed ID: 30341297 [TBL] [Abstract][Full Text] [Related]
13. Exploiting Linkage Disequilibrium for Ultrahigh-Dimensional Genome-Wide Data with an Integrated Statistical Approach. Carlsen M; Fu G; Bushman S; Corcoran C Genetics; 2016 Feb; 202(2):411-26. PubMed ID: 26661113 [TBL] [Abstract][Full Text] [Related]
14. PSEA: Phenotype Set Enrichment Analysis--a new method for analysis of multiple phenotypes. Ried JS; Döring A; Oexle K; Meisinger C; Winkelmann J; Klopp N; Meitinger T; Peters A; Suhre K; Wichmann HE; Gieger C Genet Epidemiol; 2012 Apr; 36(3):244-52. PubMed ID: 22714936 [TBL] [Abstract][Full Text] [Related]
15. GenToS: Use of Orthologous Gene Information to Prioritize Signals from Human GWAS. Hoppmann AS; Schlosser P; Backofen R; Lausch E; Köttgen A PLoS One; 2016; 11(9):e0162466. PubMed ID: 27612175 [TBL] [Abstract][Full Text] [Related]
16. iGWAS: Integrative Genome-Wide Association Studies of Genetic and Genomic Data for Disease Susceptibility Using Mediation Analysis. Huang YT; Liang L; Moffatt MF; Cookson WO; Lin X Genet Epidemiol; 2015 Jul; 39(5):347-56. PubMed ID: 25997986 [TBL] [Abstract][Full Text] [Related]
17. Statistical power of model selection strategies for genome-wide association studies. Wu Z; Zhao H PLoS Genet; 2009 Jul; 5(7):e1000582. PubMed ID: 19649321 [TBL] [Abstract][Full Text] [Related]
18. IndOR: a new statistical procedure to test for SNP-SNP epistasis in genome-wide association studies. Emily M Stat Med; 2012 Sep; 31(21):2359-73. PubMed ID: 22711278 [TBL] [Abstract][Full Text] [Related]
19. Fine-mapping additive and dominant SNP effects using group-LASSO and fractional resample model averaging. Sabourin J; Nobel AB; Valdar W Genet Epidemiol; 2015 Feb; 39(2):77-88. PubMed ID: 25417853 [TBL] [Abstract][Full Text] [Related]
20. Development and application of genomic control methods for genome-wide association studies using non-additive models. Tsepilov YA; Ried JS; Strauch K; Grallert H; van Duijn CM; Axenovich TI; Aulchenko YS PLoS One; 2013; 8(12):e81431. PubMed ID: 24358113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]