These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

572 related articles for article (PubMed ID: 29803886)

  • 1. Real-time PCR array to study the effects of chemicals on the growth hormone/insulin-like growth factors (GH/IGFs) axis of zebrafish embryos/larvae.
    Dang Y; Wang F; Liu C
    Chemosphere; 2018 Sep; 207():365-376. PubMed ID: 29803886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of GH/IGF axis in arsenite-induced developmental toxicity in zebrafish embryos.
    Wang L; Yan R; Yang Q; Li H; Zhang J; Shimoda Y; Kato K; Yamanaka K; An Y
    Ecotoxicol Environ Saf; 2020 Sep; 201():110820. PubMed ID: 32531574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute exposure to tris (2-butoxyethyl) phosphate (TBOEP) affects growth and development of embryo-larval zebrafish.
    Liu Y; Wu D; Xu Q; Yu L; Liu C; Wang J
    Aquat Toxicol; 2017 Oct; 191():17-24. PubMed ID: 28772162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity evaluation of triphenyltin in zebrafish larvae by embryonic malformation, retinal development, and GH/IGF axis.
    Li P; Li ZH
    Fish Physiol Biochem; 2020 Dec; 46(6):2101-2107. PubMed ID: 32821994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exposure to mercuric chloride induces developmental damage, oxidative stress and immunotoxicity in zebrafish embryos-larvae.
    Zhang QF; Li YW; Liu ZH; Chen QL
    Aquat Toxicol; 2016 Dec; 181():76-85. PubMed ID: 27821350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of environmentally relevant concentrations of tris (2-butoxyethyl) phosphate on growth and transcription of genes involved in the GH/IGF and HPT axes in zebrafish (Danio rerio).
    Zeng X; Sun H; Huang Y; Liu J; Yu L; Liu C; Wang J
    Chemosphere; 2018 Dec; 212():376-384. PubMed ID: 30149310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parental exposure to tris(1,3-dichloro-2-propyl) phosphate results in thyroid endocrine disruption and inhibition of growth in zebrafish offspring.
    Ren X; Wang W; Zhao X; Ren B; Chang L
    Aquat Toxicol; 2019 Apr; 209():132-141. PubMed ID: 30771614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment of a three-step method to evaluate effects of chemicals on development of zebrafish embryo/larvae.
    Li G; Ye H; Su G; Han Z; Xie C; Zhou B; Letcher RJ; Giesy JP; Yu H; Liu C
    Chemosphere; 2017 Nov; 186():209-217. PubMed ID: 28780448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endocrine and developmental effects in Atlantic salmon (Salmo salar) exposed to perfluorooctane sulfonic or perfluorooctane carboxylic acids.
    Spachmo B; Arukwe A
    Aquat Toxicol; 2012 Feb; 108():112-24. PubMed ID: 22265611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exposure of zebrafish embryos/larvae to TDCPP alters concentrations of thyroid hormones and transcriptions of genes involved in the hypothalamic-pituitary-thyroid axis.
    Wang Q; Liang K; Liu J; Yang L; Guo Y; Liu C; Zhou B
    Aquat Toxicol; 2013 Jan; 126():207-13. PubMed ID: 23220413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental toxicity and potential mechanisms of pyraoxystrobin to zebrafish (Danio rerio).
    Li H; Yu S; Cao F; Wang C; Zheng M; Li X; Qiu L
    Ecotoxicol Environ Saf; 2018 Apr; 151():1-9. PubMed ID: 29304412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of two alternative plasticizers on the growth hormone-related endocrine system, neurodevelopment, and oxidative stress of zebrafish larvae.
    Yun K; Jeon H; Lee J; Kho Y; Ji K
    Environ Pollut; 2024 Jan; 341():122947. PubMed ID: 37977359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-dependent inhibitory effects of Tris(1, 3-dichloro-2-propyl) phosphate on growth and transcription of genes involved in the GH/IGF axis, but not the HPT axis, in female zebrafish.
    Zhu Y; Su G; Yang D; Zhang Y; Yu L; Li Y; Giesy JP; Letcher RJ; Liu C
    Environ Pollut; 2017 Oct; 229():470-478. PubMed ID: 28624628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of GHRs, IGFs and MSTNs, and analysis of their expression relationships in blunt snout bream, Megalobrama amblycephala.
    Zeng C; Liu XL; Wang WM; Tong JG; Luo W; Zhang J; Gao ZX
    Gene; 2014 Feb; 535(2):239-49. PubMed ID: 24291027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A protective role of autophagy in TDCIPP-induced developmental neurotoxicity in zebrafish larvae.
    Li R; Zhang L; Shi Q; Guo Y; Zhang W; Zhou B
    Aquat Toxicol; 2018 Jun; 199():46-54. PubMed ID: 29605586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lead acetate induces cartilage defects and bone loss in zebrafish embryos by disrupting the GH/IGF-1 axis.
    Yan R; Ding J; Yang Q; Zhang X; Han J; Jin T; Shi S; Wang X; Zheng Y; Li H; Zhang H; An Y
    Ecotoxicol Environ Saf; 2023 Mar; 253():114666. PubMed ID: 36812871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parental transfer of tris(1,3-dichloro-2-propyl) phosphate and transgenerational inhibition of growth of zebrafish exposed to environmentally relevant concentrations.
    Yu L; Jia Y; Su G; Sun Y; Letcher RJ; Giesy JP; Yu H; Han Z; Liu C
    Environ Pollut; 2017 Jan; 220(Pt A):196-203. PubMed ID: 27646168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parental exposure to triphenyltin inhibits growth and disrupts thyroid function in zebrafish larvae.
    Li P; Li ZH; Zhong L
    Chemosphere; 2020 Feb; 240():124936. PubMed ID: 31568941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A transcriptomics-based analysis of toxicity mechanisms of zebrafish embryos and larvae following parental Bisphenol A exposure.
    Huang W; Zheng S; Wang X; Cai Z; Xiao J; Liu C; Wu K
    Ecotoxicol Environ Saf; 2020 Dec; 205():111165. PubMed ID: 32836160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GH indirectly enhances the regeneration of transgenic zebrafish fins through IGF2a and IGF2b.
    Nornberg BF; Almeida DV; Figueiredo MA; Marins LF
    Transgenic Res; 2016 Oct; 25(5):743-9. PubMed ID: 27126069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.