These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 29803890)

  • 1. Binding of Cd by ferrihydrite organo-mineral composites: Implications for Cd mobility and fate in natural and contaminated environments.
    Du H; Peacock CL; Chen W; Huang Q
    Chemosphere; 2018 Sep; 207():404-412. PubMed ID: 29803890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of Hg to preformed ferrihydrite-humic acid composites synthesized via co-precipitation and adsorption with different morphologies.
    Liu Y; Cheng Z; Zhi L; Zhou S
    Ecotoxicol Environ Saf; 2020 Nov; 204():111097. PubMed ID: 32784016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: Implications for arsenic mobility and fate in natural environments.
    Xue Q; Ran Y; Tan Y; Peacock CL; Du H
    Chemosphere; 2019 Jun; 224():103-110. PubMed ID: 30818188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates.
    Shimizu M; Zhou J; Schröder C; Obst M; Kappler A; Borch T
    Environ Sci Technol; 2013; 47(23):13375-84. PubMed ID: 24219167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferrihydrite-organo composites are a suitable analog for predicting Cd(II)-As(V) coexistence behaviors at the soil solid-liquid interfaces.
    Du H; Nie N; Rao W; Lu L; Lei M; Tie B
    Environ Pollut; 2021 Dec; 290():118040. PubMed ID: 34454194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of interactions of ferrihydrite-humic acid-Pb (II) system.
    Zhao Z; Yao L; Li J; Ma X; Han L; Lin Z; Guan S
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):21561-21575. PubMed ID: 34762244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Humic acids restrict the transformation and the stabilization of Cd by iron (hydr)oxides.
    Qu C; Chen J; Mortimer M; Wu Y; Cai P; Huang Q
    J Hazard Mater; 2022 May; 430():128365. PubMed ID: 35150996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of humic acid on the stabilization of cadmium in soil by coprecipitating with ferrihydrite.
    Xu M; Zhao Z; Shi M; Yao L; Fan T; Wang Z
    Environ Sci Pollut Res Int; 2019 Sep; 26(26):27330-27337. PubMed ID: 31321728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of Fe-organic matter associations via coprecipitation versus adsorption.
    Chen C; Dynes JJ; Wang J; Sparks DL
    Environ Sci Technol; 2014 Dec; 48(23):13751-9. PubMed ID: 25350793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic investigation and modeling of Cd immobilization by iron (hydr)oxide-humic acid coprecipitates.
    Qu C; Fein JB; Chen W; Ma M; Cai P; Huang Q
    J Hazard Mater; 2021 Oct; 420():126603. PubMed ID: 34329105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Underestimation of phosphorus fraction change in the supernatant after phosphorus adsorption onto iron oxides and iron oxide-natural organic matter complexes.
    Yan J; Jiang T; Yao Y; Wang J; Cai Y; Green NW; Wei S
    J Environ Sci (China); 2017 May; 55():197-205. PubMed ID: 28477813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite.
    Angelico R; Ceglie A; He JZ; Liu YR; Palumbo G; Colombo C
    Chemosphere; 2014 Mar; 99():239-47. PubMed ID: 24315181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of natural organic matter on the coprecipitation of arsenic with iron.
    Kim EJ; Hwang BR; Baek K
    Environ Geochem Health; 2015 Dec; 37(6):1029-39. PubMed ID: 25754698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary investigation of phosphorus adsorption onto two types of iron oxide-organic matter complexes.
    Yan J; Jiang T; Yao Y; Lu S; Wang Q; Wei S
    J Environ Sci (China); 2016 Apr; 42():152-162. PubMed ID: 27090706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption of nonpolar neutral organic compounds to low-surface-area metal (hydr)oxide- and humic acid- coated model aquifer sands.
    Joo JC; Song MS; Kim JK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(6):909-18. PubMed ID: 22423998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferrihydrite Growth and Transformation in the Presence of Ferrous Iron and Model Organic Ligands.
    ThomasArrigo LK; Kaegi R; Kretzschmar R
    Environ Sci Technol; 2019 Dec; 53(23):13636-13647. PubMed ID: 31718167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphate effects on cadmium(II) sorption to ferrihydrite.
    Tiberg C; Gustafsson JP
    J Colloid Interface Sci; 2016 Jun; 471():103-111. PubMed ID: 26994350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced cadmium removal by biochar and iron oxides composite: Material interactions and pore structure.
    Liu Y; Wang L; Liu C; Ma J; Ouyang X; Weng L; Chen Y; Li Y
    J Environ Manage; 2023 Mar; 330():117136. PubMed ID: 36584474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates.
    Karimian N; Burton ED; Johnston SG
    Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cd sequestration by bacteria-aluminum hydroxide composites.
    Du H; Huang Q; Yang R; Tie B; Lei M
    Chemosphere; 2018 May; 198():75-82. PubMed ID: 29421763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.