BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 29804234)

  • 41. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird.
    Both C; Visser ME
    Nature; 2001 May; 411(6835):296-8. PubMed ID: 11357129
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification.
    Lameris TK; Scholten I; Bauer S; Cobben MMP; Ens BJ; Nolet BA
    Glob Chang Biol; 2017 Oct; 23(10):4058-4067. PubMed ID: 28295932
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Local temperature and El Niño Southern Oscillation influence migration phenology of East Asian migratory waterbirds wintering in Poyang, China.
    Xu F; Liu G; Si Y
    Integr Zool; 2017 Jul; 12(4):303-317. PubMed ID: 27992108
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantifying full phenological event distributions reveals simultaneous advances, temporal stability and delays in spring and autumn migration timing in long-distance migratory birds.
    Miles WT; Bolton M; Davis P; Dennis R; Broad R; Robertson I; Riddiford NJ; Harvey PV; Riddington R; Shaw DN; Parnaby D; Reid JM
    Glob Chang Biol; 2017 Apr; 23(4):1400-1414. PubMed ID: 27670638
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phenological trends in the pre- and post-breeding migration of long-distance migratory birds.
    Lawrence KB; Barlow CR; Bensusan K; Perez C; Willis SG
    Glob Chang Biol; 2022 Jan; 28(2):375-389. PubMed ID: 34606660
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Earlier springs increase goose breeding propensity and nesting success at Arctic but not at temperate latitudes.
    Boom MP; Schreven KHT; Buitendijk NH; Moonen S; Nolet BA; Eichhorn G; van der Jeugd HP; Lameris TK
    J Anim Ecol; 2023 Dec; 92(12):2399-2411. PubMed ID: 37899661
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Warm springs, early lay dates, and double brooding in a North American migratory songbird, the black-throated blue warbler.
    Townsend AK; Sillett TS; Lany NK; Kaiser SA; Rodenhouse NL; Webster MS; Holmes RT
    PLoS One; 2013; 8(4):e59467. PubMed ID: 23565154
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diverging phenological responses of Arctic seabirds to an earlier spring.
    Descamps S; Ramírez F; Benjaminsen S; Anker-Nilssen T; Barrett RT; Burr Z; Christensen-Dalsgaard S; Erikstad KE; Irons DB; Lorentsen SH; Mallory ML; Robertson GJ; Reiertsen TK; Strøm H; Varpe Ø; Lavergne S
    Glob Chang Biol; 2019 Dec; 25(12):4081-4091. PubMed ID: 31368188
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A full annual perspective on sex-biased migration timing in long-distance migratory birds.
    Briedis M; Bauer S; Adamík P; Alves JA; Costa JS; Emmenegger T; Gustafsson L; Koleček J; Liechti F; Meier CM; Procházka P; Hahn S
    Proc Biol Sci; 2019 Feb; 286(1897):20182821. PubMed ID: 30963841
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Idiosyncratic changes in spring arrival dates of Pacific Northwest migratory birds.
    Robinson WD; Partipilo C; Hallman TA; Fairchild K; Fairchild JP
    PeerJ; 2019; 7():e7999. PubMed ID: 31720118
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Changes in the timing of departure and arrival of Irish migrant waterbirds.
    Donnelly A; Geyer H; Yu R
    PeerJ; 2015; 3():e726. PubMed ID: 25653907
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of territory competition and climate change on timing of arrival to breeding grounds: a game-theory approach.
    Johansson J; Jonzén N
    Am Nat; 2012 Apr; 179(4):463-74. PubMed ID: 22437176
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Birds use individually consistent temperature cues to time their migration departure.
    Burnside RJ; Salliss D; Collar NJ; Dolman PM
    Proc Natl Acad Sci U S A; 2021 Jul; 118(28):. PubMed ID: 34260383
    [TBL] [Abstract][Full Text] [Related]  

  • 54. How weather conditions in non-breeding and breeding grounds affect the phenology and breeding abilities of white storks.
    Tobolka M; Dylewski L; Wozna JT; Zolnierowicz KM
    Sci Total Environ; 2018 Sep; 636():512-518. PubMed ID: 29709867
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Increasing phenological asynchrony between spring green-up and arrival of migratory birds.
    Mayor SJ; Guralnick RP; Tingley MW; Otegui J; Withey JC; Elmendorf SC; Andrew ME; Leyk S; Pearse IS; Schneider DC
    Sci Rep; 2017 May; 7(1):1902. PubMed ID: 28507323
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent Shift in Climate Relationship Enables Prediction of the Timing of Bird Breeding.
    Hinsley SA; Bellamy PE; Hill RA; Ferns PN
    PLoS One; 2016; 11(5):e0155241. PubMed ID: 27182711
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Migratory swans individually adjust their autumn migration and winter range to a warming climate.
    Linssen H; van Loon EE; Shamoun-Baranes JZ; Nuijten RJM; Nolet BA
    Glob Chang Biol; 2023 Dec; 29(24):6888-6899. PubMed ID: 37795645
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spring arrival of the common cuckoo at breeding grounds is strongly determined by environmental conditions in tropical Africa.
    Davies JG; Kirkland M; Miller MGR; Pearce-Higgins JW; Atkinson PW; Hewson CM
    Proc Biol Sci; 2023 Jun; 290(2001):20230580. PubMed ID: 37339739
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Challenging a 15-year-old claim: The North Atlantic Oscillation index as a predictor of spring migration phenology of birds.
    Haest B; Hüppop O; Bairlein F
    Glob Chang Biol; 2018 Apr; 24(4):1523-1537. PubMed ID: 29251800
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of spring temperatures on the strength of selection on timing of reproduction in a long-distance migratory bird.
    Visser ME; Gienapp P; Husby A; Morrisey M; de la Hera I; Pulido F; Both C
    PLoS Biol; 2015 Apr; 13(4):e1002120. PubMed ID: 25848856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.