These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 29804242)

  • 1. Elevated levels of the small GTPase Cdc42 induces senescence in male rat mesenchymal stem cells.
    Umbayev B; Masoud AR; Tsoy A; Alimbetov D; Olzhayev F; Shramko A; Kaiyrlykyzy A; Safarova Y; Davis T; Askarova S
    Biogerontology; 2018 Jul; 19(3-4):287-301. PubMed ID: 29804242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TGF-β Signaling Accelerates Senescence of Human Bone-Derived CD271 and SSEA-4 Double-Positive Mesenchymal Stromal Cells.
    Kawamura H; Nakatsuka R; Matsuoka Y; Sumide K; Fujioka T; Asano H; Iida H; Sonoda Y
    Stem Cell Reports; 2018 Mar; 10(3):920-932. PubMed ID: 29478902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autophagy inhibits the mesenchymal stem cell aging induced by D-galactose through ROS/JNK/p38 signalling.
    Zhang D; Chen Y; Xu X; Xiang H; Shi Y; Gao Y; Wang X; Jiang X; Li N; Pan J
    Clin Exp Pharmacol Physiol; 2020 Mar; 47(3):466-477. PubMed ID: 31675454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of the RhoGTPase Cdc42 by ML141 enhances hepatocyte differentiation from human adipose-derived mesenchymal stem cells via the Wnt5a/PI3K/miR-122 pathway: impact of the age of the donor.
    Chaker D; Mouawad C; Azar A; Quilliot D; Achkar I; Fajloun Z; Makdissy N
    Stem Cell Res Ther; 2018 Jun; 9(1):167. PubMed ID: 29921325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autofluorescence is a Reliable in vitro Marker of Cellular Senescence in Human Mesenchymal Stromal Cells.
    Bertolo A; Baur M; Guerrero J; Pötzel T; Stoyanov J
    Sci Rep; 2019 Feb; 9(1):2074. PubMed ID: 30765770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of miR-34a reduces cellular senescence in human adipose tissue-derived mesenchymal stem cells through the activation of SIRT1.
    Mokhberian N; Bolandi Z; Eftekhary M; Hashemi SM; Jajarmi V; Sharifi K; Ghanbarian H
    Life Sci; 2020 Sep; 257():118055. PubMed ID: 32634429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-RNAS Regulate Metabolic Syndrome-induced Senescence in Porcine Adipose Tissue-derived Mesenchymal Stem Cells through the P16/MAPK Pathway.
    Meng Y; Eirin A; Zhu XY; Tang H; Hickson LJ; Lerman A; van Wijnen AJ; Lerman LO
    Cell Transplant; 2018 Oct; 27(10):1495-1503. PubMed ID: 30187775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alcohol Induces Cellular Senescence and Impairs Osteogenic Potential in Bone Marrow-Derived Mesenchymal Stem Cells.
    Chen X; Li M; Yan J; Liu T; Pan G; Yang H; Pei M; He F
    Alcohol Alcohol; 2017 May; 52(3):289-297. PubMed ID: 28339869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway.
    Zhang DY; Wang HJ; Tan YZ
    PLoS One; 2011; 6(6):e21397. PubMed ID: 21712954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of high glucose conditions on the expansion and differentiation capabilities of mesenchymal stromal cells derived from rat endosteal niche.
    Al-Qarakhli AMA; Yusop N; Waddington RJ; Moseley R
    BMC Mol Cell Biol; 2019 Nov; 20(1):51. PubMed ID: 31752674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis.
    Zhang C; Li L; Jiang Y; Wang C; Geng B; Wang Y; Chen J; Liu F; Qiu P; Zhai G; Chen P; Quan R; Wang J
    FASEB J; 2018 Aug; 32(8):4444-4458. PubMed ID: 29533735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying Senescence-Associated Phenotypes in Primary Multipotent Mesenchymal Stromal Cell Cultures.
    Nadeau S; Cheng A; Colmegna I; Rodier F
    Methods Mol Biol; 2019; 2045():93-105. PubMed ID: 31020633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of senescence-related changes between three- and two-dimensional cultured adipose-derived mesenchymal stem cells.
    Yin Q; Xu N; Xu D; Dong M; Shi X; Wang Y; Hao Z; Zhu S; Zhao D; Jin H; Liu W
    Stem Cell Res Ther; 2020 Jun; 11(1):226. PubMed ID: 32517737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of c-Jun N-terminal kinase in the osteogenic and adipogenic differentiation of human adipose-derived mesenchymal stem cells.
    Gu H; Huang Z; Yin X; Zhang J; Gong L; Chen J; Rong K; Xu J; Lu L; Cui L
    Exp Cell Res; 2015 Nov; 339(1):112-21. PubMed ID: 26272544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of Cdc42-mediated rat MSC differentiation on micro/nano-textured topography.
    Li G; Song Y; Shi M; Du Y; Wang W; Zhang Y
    Acta Biomater; 2017 Feb; 49():235-246. PubMed ID: 27890731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-pRB pathways.
    Shang J; Yao Y; Fan X; Shangguan L; Li J; Liu H; Zhou Y
    Biochim Biophys Acta; 2016 Apr; 1863(4):520-32. PubMed ID: 26792405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. H2O2 accumulation mediates differentiation capacity alteration, but not proliferative decline, in senescent human fetal mesenchymal stem cells.
    Ho PJ; Yen ML; Tang BC; Chen CT; Yen BL
    Antioxid Redox Signal; 2013 May; 18(15):1895-905. PubMed ID: 23088254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TZAP plays an inhibitory role in the self-renewal of porcine mesenchymal stromal cells and is implicated the regulation of premature senescence via the p53 pathway.
    Bie YN; Gu P; Chen YT; Zhou XX; Tian YG; Yang Q; Li HY; Lin X; Guan YH; Lin TY; Lu X; Shen HF; Fang TX; Liu YM; Xiao D; Gu WW
    J Transl Med; 2019 Mar; 17(1):72. PubMed ID: 30845965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesenchymal stem cell senescence alleviates their intrinsic and seno-suppressive paracrine properties contributing to osteoarthritis development.
    Malaise O; Tachikart Y; Constantinides M; Mumme M; Ferreira-Lopez R; Noack S; Krettek C; Noël D; Wang J; Jorgensen C; Brondello JM
    Aging (Albany NY); 2019 Oct; 11(20):9128-9146. PubMed ID: 31644429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Aspects of Adipose-Derived Stromal Cell Senescence in a Long-Term Culture: A Potential Role of Inflammatory Pathways.
    Pokrywczynska M; Maj M; Kloskowski T; Buhl M; Balcerczyk D; Jundziłł A; Szeliski K; Rasmus M; Drewa T
    Cell Transplant; 2020; 29():963689720917341. PubMed ID: 32314614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.