These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29804668)

  • 1. Optogenetic control of mitosis with photocaged chemical dimerizers.
    Zhang H; Chenoweth DM; Lampson MA
    Methods Cell Biol; 2018; 144():157-164. PubMed ID: 29804668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic control of kinetochore function.
    Zhang H; Aonbangkhen C; Tarasovetc EV; Ballister ER; Chenoweth DM; Lampson MA
    Nat Chem Biol; 2017 Oct; 13(10):1096-1101. PubMed ID: 28805800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible optogenetic control of protein function and localization.
    Wu DZ; Lackner RM; Aonbangkhen C; Lampson MA; Chenoweth DM
    Methods Enzymol; 2019; 624():25-45. PubMed ID: 31370933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic Manipulation of Mouse Oocytes.
    Akera T; Chenoweth DM; Lampson MA
    Methods Mol Biol; 2018; 1818():129-135. PubMed ID: 29961261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic reversible knocksideways, laser ablation, and photoactivation on the mitotic spindle in human cells.
    Milas A; Jagrić M; Martinčić J; Tolić IM
    Methods Cell Biol; 2018; 145():191-215. PubMed ID: 29957204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable and Photoswitchable Chemically Induced Dimerization for Chemo-optogenetic Control of Protein and Organelle Positioning.
    Chen X; Wu YW
    Angew Chem Int Ed Engl; 2018 Jun; 57(23):6796-6799. PubMed ID: 29637703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multidirectional Activity Control of Cellular Processes by a Versatile Chemo-optogenetic Approach.
    Chen X; Venkatachalapathy M; Dehmelt L; Wu YW
    Angew Chem Int Ed Engl; 2018 Sep; 57(37):11993-11997. PubMed ID: 30048030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetics - Bringing light into the darkness of mammalian signal transduction.
    Mühlhäuser WW; Fischer A; Weber W; Radziwill G
    Biochim Biophys Acta Mol Cell Res; 2017 Feb; 1864(2):280-292. PubMed ID: 27845208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic control of organelle transport using a photocaged chemical inducer of dimerization.
    Ballister ER; Ayloo S; Chenoweth DM; Lampson MA; Holzbaur ELF
    Curr Biol; 2015 May; 25(10):R407-R408. PubMed ID: 25989077
    [No Abstract]   [Full Text] [Related]  

  • 10. An optogenetic approach to control protein localization during embryogenesis of the sea urchin.
    Uchida A; Yajima M
    Dev Biol; 2018 Sep; 441(1):19-30. PubMed ID: 29958898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-Induced Dimerization Approaches to Control Cellular Processes.
    Klewer L; Wu YW
    Chemistry; 2019 Sep; 25(54):12452-12463. PubMed ID: 31304989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Following Optogenetic Dimerizers and Quantitative Prospects.
    Niu J; Ben Johny M; Dick IE; Inoue T
    Biophys J; 2016 Sep; 111(6):1132-1140. PubMed ID: 27542508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized Vivid-derived Magnets photodimerizers for subcellular optogenetics in mammalian cells.
    Benedetti L; Marvin JS; Falahati H; Guillén-Samander A; Looger LL; De Camilli P
    Elife; 2020 Nov; 9():. PubMed ID: 33174843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity.
    McCleland ML; Gardner RD; Kallio MJ; Daum JR; Gorbsky GJ; Burke DJ; Stukenberg PT
    Genes Dev; 2003 Jan; 17(1):101-14. PubMed ID: 12514103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosome motors on the move. From motion to spindle checkpoint activity.
    Brunet S; Vernos I
    EMBO Rep; 2001 Aug; 2(8):669-73. PubMed ID: 11493594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erroneous Silencing of the Mitotic Checkpoint by Aberrant Spindle Pole-Kinetochore Coordination.
    Chen J; Liu J
    Biophys J; 2015 Dec; 109(11):2418-35. PubMed ID: 26636952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the Mad2 dimerization interface in the spindle assembly checkpoint independent of kinetochores.
    Mariani L; Chiroli E; Nezi L; Muller H; Piatti S; Musacchio A; Ciliberto A
    Curr Biol; 2012 Oct; 22(20):1900-8. PubMed ID: 23000150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast.
    Salinas F; Rojas V; Delgado V; López J; Agosin E; Larrondo LF
    mBio; 2018 Jul; 9(4):. PubMed ID: 30065085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing Mitosis by Manipulating the Interactions of Mitotic Regulator Proteins Using Rapamycin-Inducible Dimerization.
    Ballister ER; Lampson MA
    Methods Mol Biol; 2016; 1413():325-31. PubMed ID: 27193858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetic perturbation of the biochemical pathways that control cell behavior.
    Haar LL; Lawrence DS; Hughes RM
    Methods Enzymol; 2019; 622():309-328. PubMed ID: 31155059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.