These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 29804914)

  • 1. Electrical impedance imaging of human muscle at the microscopic scale using a multi-electrode needle device: A simulation study.
    Rutkove SB; Kwon H; Guasch M; Wu JS; Sanchez B
    Clin Neurophysiol; 2018 Aug; 129(8):1704-1708. PubMed ID: 29804914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recording characteristics of electrical impedance-electromyography needle electrodes.
    Kwon H; Di Cristina JF; Rutkove SB; Sanchez B
    Physiol Meas; 2018 May; 39(5):055005. PubMed ID: 29616985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recording characteristics of electrical impedance myography needle electrodes.
    Kwon H; Rutkove SB; Sanchez B
    Physiol Meas; 2017 Aug; 38(9):1748-1765. PubMed ID: 28721951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the measurement of skeletal muscle anisotropic permittivity property with a single cross-shaped needle insertion.
    Kwon H; Park HC; Barrera AC; Rutkove SB; Sanchez B
    Sci Rep; 2022 May; 12(1):8494. PubMed ID: 35589764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity distribution simulations of surface electrode configurations for electrical impedance myography.
    Rutkove SB; Pacheck A; Sanchez B
    Muscle Nerve; 2017 Nov; 56(5):887-895. PubMed ID: 28056494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biopsy Needle Integrated with Electrical Impedance Sensing Microelectrode Array towards Real-time Needle Guidance and Tissue Discrimination.
    Park J; Choi WM; Kim K; Jeong WI; Seo JB; Park I
    Sci Rep; 2018 Jan; 8(1):264. PubMed ID: 29321531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New electrical impedance methods for the in situ measurement of the complex permittivity of anisotropic skeletal muscle using multipolar needles.
    Kwon H; Guasch M; Nagy JA; Rutkove SB; Sanchez B
    Sci Rep; 2019 Feb; 9(1):3145. PubMed ID: 30816169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empirical study of unipolar and bipolar configurations using high resolution single multi-walled carbon nanotube electrodes for electrophysiological probing of electrically excitable cells.
    de Asis ED; Leung J; Wood S; Nguyen CV
    Nanotechnology; 2010 Mar; 21(12):125101. PubMed ID: 20182008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of Subcutaneous Fat From Muscle in Surface Electrical Impedance Myography Measurements Using Model Component Analysis.
    Kwon H; Malik WQ; Rutkove SB; Sanchez B
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):354-364. PubMed ID: 29993468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial sensitivity distribution assessment and Monte Carlo simulations for needle-based bioimpedance imaging during venipuncture using the finite element method.
    Atmaca Ö; Liu J; Ly TJ; Bajraktari F; Pott PP
    Int J Numer Method Biomed Eng; 2024 Jul; 40(7):e3831. PubMed ID: 38690649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal distance of multi-plane sensor in three-dimensional electrical impedance tomography.
    Hao Z; Yue S; Sun B; Wang H
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):326-338. PubMed ID: 29037075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical impedance tomography in 3D using two electrode planes: characterization and evaluation.
    Wagenaar J; Adler A
    Physiol Meas; 2016 Jun; 37(6):922-37. PubMed ID: 27203154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedance-based tissue discrimination for needle guidance.
    Kalvøy H; Frich L; Grimnes S; Martinsen OG; Hol PK; Stubhaug A
    Physiol Meas; 2009 Feb; 30(2):129-40. PubMed ID: 19136732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitation patterns in three-dimensional electrical impedance tomography.
    Dehghani H; Soni N; Halter R; Hartov A; Paulsen KD
    Physiol Meas; 2005 Apr; 26(2):S185-97. PubMed ID: 15798231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical current density model from surface electrodes.
    Waugaman WA
    Biomed Sci Instrum; 1997; 34():131-6. PubMed ID: 9603026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lobe based image reconstruction in Electrical Impedance Tomography.
    Schullcke B; Gong B; Krueger-Ziolek S; Tawhai M; Adler A; Mueller-Lisse U; Moeller K
    Med Phys; 2017 Feb; 44(2):426-436. PubMed ID: 28121374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative color three-dimensional computer tomography imaging of human long-term denervated muscle.
    Gargiulo P; Kern H; Carraro U; Ingvarsson P; Knútsdóttir S; Gudmundsdóttir V; Yngvason S; Vatnsdal B; Helgason T
    Neurol Res; 2010 Feb; 32(1):13-9. PubMed ID: 20092691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of different stimulation and measurement patterns based on internal electrode: application in cardiac impedance tomography.
    Nasehi Tehrani J; Oh TI; Jin C; Thiagalingam A; McEwan A
    Comput Biol Med; 2012 Nov; 42(11):1122-32. PubMed ID: 23017828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guidelines to electrode positioning for human and animal electrical impedance myography research.
    Sanchez B; Pacheck A; Rutkove SB
    Sci Rep; 2016 Sep; 6():32615. PubMed ID: 27585740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An image reconstruction algorithm for 3-D electrical impedance mammography.
    Zhang X; Wang W; Sze G; Barber D; Chatwin C
    IEEE Trans Med Imaging; 2014 Dec; 33(12):2223-41. PubMed ID: 25014954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.