These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29804993)

  • 41. Pharmacokinetics and pharmacodynamics evaluation of a thermosensitive chitosan based hydrogel containing liposomal doxorubicin.
    Ren S; Dai Y; Li C; Qiu Z; Wang X; Tian F; Zhou S; Liu Q; Xing H; Lu Y; Chen X; Li N
    Eur J Pharm Sci; 2016 Sep; 92():137-45. PubMed ID: 27388491
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reduction-responsive and bioorthogonal carboxymethyl cellulose based soft hydrogels cross-linked via IEDDA click chemistry for cancer therapy application.
    Ali I; Gulfam M; Jo SH; Seo JW; Rizwan A; Park SH; Lim KT
    Int J Biol Macromol; 2022 Oct; 219():109-120. PubMed ID: 35931291
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dextran methacrylate hydrogel microneedles loaded with doxorubicin and trametinib for continuous transdermal administration of melanoma.
    Huang S; Liu H; Huang S; Fu T; Xue W; Guo R
    Carbohydr Polym; 2020 Oct; 246():116650. PubMed ID: 32747282
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A mussel-inspired carboxymethyl cellulose hydrogel with enhanced adhesiveness through enzymatic crosslinking.
    Zhong Y; Wang J; Yuan Z; Wang Y; Xi Z; Li L; Liu Z; Guo X
    Colloids Surf B Biointerfaces; 2019 Jul; 179():462-469. PubMed ID: 31005741
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanospheres of doxorubicin as cross-linkers for a supramolecular hydrogelation.
    Xue Q; Ren H; Xu C; Wang G; Ren C; Hao J; Ding D
    Sci Rep; 2015 Mar; 5():8764. PubMed ID: 25739554
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Folate-functionalized assembly of low density lipoprotein/sodium carboxymethyl cellulose nanoparticles for targeted delivery.
    Liang H; He L; Zhou B; Li B; Li J
    Colloids Surf B Biointerfaces; 2017 Aug; 156():19-28. PubMed ID: 28499201
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir.
    Malik NS; Ahmad M; Minhas MU
    PLoS One; 2017; 12(2):e0172727. PubMed ID: 28245257
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Coordinate bonding strategy for molecularly imprinted hydrogels: toward pH-responsive doxorubicin delivery.
    Zhang Q; Zhang L; Wang P; Du S
    J Pharm Sci; 2014 Feb; 103(2):643-51. PubMed ID: 24395706
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A pH-responsive prodrug for real-time drug release monitoring and targeted cancer therapy.
    Li SY; Liu LH; Jia HZ; Qiu WX; Rong L; Cheng H; Zhang XZ
    Chem Commun (Camb); 2014 Oct; 50(80):11852-5. PubMed ID: 25145493
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Targeted anticancer prodrug with mesoporous silica nanoparticles as vehicles.
    Fan J; Fang G; Wang X; Zeng F; Xiang Y; Wu S
    Nanotechnology; 2011 Nov; 22(45):455102. PubMed ID: 22019849
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis and characterization of biodegradable and thermosensitive polymeric micelles with covalently bound doxorubicin-glucuronide prodrug via click chemistry.
    Talelli M; Morita K; Rijcken CJ; Aben RW; Lammers T; Scheeren HW; van Nostrum CF; Storm G; Hennink WE
    Bioconjug Chem; 2011 Dec; 22(12):2519-30. PubMed ID: 22017211
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Carboxymethylcellulose biofunctionalized ternary quantum dots for subcellular-targeted brain cancer nanotheranostics.
    Mansur AAP; Paiva MRB; Cotta OAL; Silva LM; Carvalho IC; Capanema NSV; Carvalho SM; Costa ÉA; Martin NR; Ecco R; Santos BS; Fialho SL; Lobato ZIP; Mansur HS
    Int J Biol Macromol; 2022 Jun; 210():530-544. PubMed ID: 35513094
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrogels for combination delivery of antineoplastic agents.
    Bouhadir KH; Alsberg E; Mooney DJ
    Biomaterials; 2001 Oct; 22(19):2625-33. PubMed ID: 11519782
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of the tumor targeting of a FAPα-based doxorubicin prodrug.
    Huang S; Fang R; Xu J; Qiu S; Zhang H; Du J; Cai S
    J Drug Target; 2011 Aug; 19(7):487-96. PubMed ID: 21284542
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A prodrug strategy based on chitosan for efficient intracellular anticancer drug delivery.
    Chen C; Zhou JL; Han X; Song F; Wang XL; Wang YZ
    Nanotechnology; 2014 Jun; 25(25):255101. PubMed ID: 24896540
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Amphipathic dextran-doxorubicin prodrug micelles for solid tumor therapy.
    Jin R; Guo X; Dong L; Xie E; Cao A
    Colloids Surf B Biointerfaces; 2017 Oct; 158():47-56. PubMed ID: 28667893
    [TBL] [Abstract][Full Text] [Related]  

  • 57. pH-sensitive carboxymethyl chitosan hydrogels via acid-labile ortho ester linkage for potential biomedical applications.
    Hu L; Zhang P; Wang X; Cheng X; Qin J; Tang R
    Carbohydr Polym; 2017 Dec; 178():166-179. PubMed ID: 29050582
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In situ hydrogelation of forky peptides in prostate tissue for drug delivery.
    Tao M; Liu J; He S; Xu K; Zhong W
    Soft Matter; 2019 May; 15(20):4200-4207. PubMed ID: 31070656
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single-walled carbon nanotube-conjugated chemotherapy exhibits increased therapeutic index in melanoma.
    Chaudhuri P; Soni S; Sengupta S
    Nanotechnology; 2010 Jan; 21(2):025102. PubMed ID: 19955607
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Doxorubicin-induced co-assembling nanomedicines with temperature-sensitive acidic polymer and their in-situ-forming hydrogels for intratumoral administration.
    Wan J; Geng S; Zhao H; Peng X; Zhou Q; Li H; He M; Zhao Y; Yang X; Xu H
    J Control Release; 2016 Aug; 235():328-336. PubMed ID: 27282415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.