These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29805260)

  • 1. Mechanistic insight into the interaction of gastrointestinal mucus with oral diblock copolymers synthesized via ATRP method.
    Liu J; Cao J; Cao J; Han S; Liang Y; Bai M; Sun Y
    Int J Nanomedicine; 2018; 13():2839-2856. PubMed ID: 29805260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid nanovehicles with adjustable surface properties for overcoming multiple barriers simultaneously in oral administration.
    Wu L; Liu M; Shan W; Cui Y; Zhang Z; Huang Y
    Int J Pharm; 2017 Mar; 520(1-2):216-227. PubMed ID: 28185960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overcoming multiple gastrointestinal barriers by bilayer modified hollow mesoporous silica nanocarriers.
    Wang Y; Zhao Y; Cui Y; Zhao Q; Zhang Q; Musetti S; Kinghorn KA; Wang S
    Acta Biomater; 2018 Jan; 65():405-416. PubMed ID: 29037897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amphotericin B aggregation inhibition with novel nanoparticles prepared with poly(epsilon-caprolactone)/poly(n,n-dimethylamino-2-ethyl methacrylate) diblock copolymer.
    Shim YH; Kim YC; Lee HJ; Bougard F; Dubois P; Choi KC; Chung CW; Kang DH; Jeong YI
    J Microbiol Biotechnol; 2011 Jan; 21(1):28-36. PubMed ID: 21301189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on the fate of polymeric nanoparticles in the process of the intestinal absorption based on model nanoparticles with various characteristics: size, surface charge and pro-hydrophobics.
    Guo S; Liang Y; Liu L; Yin M; Wang A; Sun K; Li Y; Shi Y
    J Nanobiotechnology; 2021 Jan; 19(1):32. PubMed ID: 33499885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Influence of Nanoparticle Properties on Oral Bioavailability of Drugs.
    Wang Y; Pi C; Feng X; Hou Y; Zhao L; Wei Y
    Int J Nanomedicine; 2020; 15():6295-6310. PubMed ID: 32943863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virus-Mimicking Mesoporous Silica Nanoparticles with an Electrically Neutral and Hydrophilic Surface to Improve the Oral Absorption of Insulin by Breaking Through Dual Barriers of the Mucus Layer and the Intestinal Epithelium.
    Zhang Y; Xiong M; Ni X; Wang J; Rong H; Su Y; Yu S; Mohammad IS; Leung SSY; Hu H
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):18077-18088. PubMed ID: 33830730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Denatured globular protein and bile salt-coated nanoparticles for poorly water-soluble drugs: Penetration across the intestinal epithelial barrier into the circulation system and enhanced oral bioavailability.
    He W; Yang K; Fan L; Lv Y; Jin Z; Zhu S; Qin C; Wang Y; Yin L
    Int J Pharm; 2015 Nov; 495(1):9-18. PubMed ID: 26325310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced oral absorption and anticancer efficacy of cabazitaxel by overcoming intestinal mucus and epithelium barriers using surface polyethylene oxide (PEO) decorated positively charged polymer-lipid hybrid nanoparticles.
    Ren T; Wang Q; Xu Y; Cong L; Gou J; Tao X; Zhang Y; He H; Yin T; Zhang H; Zhang Y; Tang X
    J Control Release; 2018 Jan; 269():423-438. PubMed ID: 29133120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-exclusive effect of nanostructured lipid carriers on oral drug delivery.
    Li H; Chen M; Su Z; Sun M; Ping Q
    Int J Pharm; 2016 Sep; 511(1):524-537. PubMed ID: 27452421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of surface modification and size on oral drug delivery of mesoporous silica formulation.
    Wang Y; Cui Y; Zhao Y; Zhao Q; He B; Zhang Q; Wang S
    J Colloid Interface Sci; 2018 Mar; 513():736-747. PubMed ID: 29220688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles.
    Yuan H; Chen CY; Chai GH; Du YZ; Hu FQ
    Mol Pharm; 2013 May; 10(5):1865-73. PubMed ID: 23495754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of biotin decorated enterocyte targeting muco-inert nanocomplexes for enhanced oral insulin delivery.
    Cui Z; Qin L; Guo S; Cheng H; Zhang X; Guan J; Mao S
    Carbohydr Polym; 2021 Jun; 261():117873. PubMed ID: 33766360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer-functionalized mesoporous carbon nanoparticles on overcoming multiple barriers and improving oral bioavailability of Probucol.
    Lu H; Yang G; Ran F; Gao T; Sun C; Zhao Q; Wang S
    Carbohydr Polym; 2020 Feb; 229():115508. PubMed ID: 31826471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers.
    Haddadzadegan S; Dorkoosh F; Bernkop-Schnürch A
    Adv Drug Deliv Rev; 2022 Mar; 182():114097. PubMed ID: 34999121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalization of lignin through ATRP grafting of poly(2-dimethylaminoethyl methacrylate) for gene delivery.
    Liu X; Yin H; Zhang Z; Diao B; Li J
    Colloids Surf B Biointerfaces; 2015 Jan; 125():230-7. PubMed ID: 25506805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and in vivo evaluation of papain-functionalized nanoparticles.
    Müller C; Perera G; König V; Bernkop-Schnürch A
    Eur J Pharm Biopharm; 2014 May; 87(1):125-31. PubMed ID: 24373995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin.
    Zhao J; Wang H; Liu J; Deng L; Liu J; Dong A; Zhang J
    Biomacromolecules; 2013 Nov; 14(11):3973-84. PubMed ID: 24107101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of nanoparticles composed of graft copolymers for oral peptide delivery.
    Sakuma S; Hayashi M; Akashi M
    Adv Drug Deliv Rev; 2001 Mar; 47(1):21-37. PubMed ID: 11251243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of a Dual-Stimuli-Responsive Supramolecular Micelle from a Pillar[5]arene-Based Supramolecular Diblock Copolymer for Photodynamic Therapy.
    Wu J; Xia L; Liu Z; Xu Z; Cao H; Zhang W
    Macromol Rapid Commun; 2019 Sep; 40(18):e1900240. PubMed ID: 31298785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.