These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29806167)

  • 41. Ab initio study of hydrogen-bond formation between aliphatic and phenolic hydroxy groups and selected amino acid side chains.
    Nagy PI; Erhardt PW
    J Phys Chem A; 2008 May; 112(18):4342-54. PubMed ID: 18373368
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Origin of the SN2 benzylic effect.
    Galabov B; Nikolova V; Wilke JJ; Schaefer HF; Allen WD
    J Am Chem Soc; 2008 Jul; 130(30):9887-96. PubMed ID: 18597451
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of allylic groups on S(N)2 reactivity.
    Erden I; Gronert S; Keeffe JR; Ma J; Ocal N; Gärtner C; Soukup LL
    J Org Chem; 2014 Jul; 79(14):6410-8. PubMed ID: 24977317
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Origin of fast catalysis in allylic amination reactions catalyzed by Pd-Ti heterobimetallic complexes.
    Walker WK; Kay BM; Michaelis SA; Anderson DL; Smith SJ; Ess DH; Michaelis DJ
    J Am Chem Soc; 2015 Jun; 137(23):7371-8. PubMed ID: 25946518
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Shapeshifting Nucleophiles HO
    Wu X; Hu Y; Zhang S; Xie J
    J Phys Chem A; 2024 Apr; 128(13):2556-2564. PubMed ID: 38530765
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ab initio study of the SN1Ar and SN2Ar reactions of benzenediazonium ion with water. On the conception of "unimolecular dediazoniation" in solvolysis reactions.
    Wu Z; Glaser R
    J Am Chem Soc; 2004 Sep; 126(34):10632-9. PubMed ID: 15327321
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cheletropic decomposition of cyclic nitrosoamines revisited: the nature of the transition states and a critical role of the ring strain.
    Shustov GV; Rauk A
    J Org Chem; 2000 Jun; 65(12):3612-9. PubMed ID: 10864743
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transition metal catalyzed nucleophilic allylic substitution: activation of allylic alcohols via π-allylic species.
    Sundararaju B; Achard M; Bruneau C
    Chem Soc Rev; 2012 Jun; 41(12):4467-83. PubMed ID: 22576362
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Frontside versus Backside S(N)2 substitution at group 14 atoms: origin of reaction barriers and reasons for their absence.
    Bento AP; Bickelhaupt FM
    Chem Asian J; 2008 Oct; 3(10):1783-92. PubMed ID: 18712744
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Steric effects and solvent effects on SN2 reactions.
    Kim Y; Cramer CJ; Truhlar DG
    J Phys Chem A; 2009 Aug; 113(32):9109-14. PubMed ID: 19719294
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transition state stabilization and substrate strain in enzyme catalysis: ab initio QM/MM modelling of the chorismate mutase reaction.
    Ranaghan KE; Ridder L; Szefczyk B; Sokalski WA; Hermann JC; Mulholland AJ
    Org Biomol Chem; 2004 Apr; 2(7):968-80. PubMed ID: 15034619
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of ion-molecule pairs in solvolysis reactions. Nucleophilic addition of water to a tertiary allylic carbocation.
    Jia ZS; Ottosson H; Zeng X; Thibblin A
    J Org Chem; 2002 Jan; 67(1):182-7. PubMed ID: 11777457
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Iridium-Catalyzed Asymmetric Synthesis of Functionally Rich Molecules Enabled by (Phosphoramidite,Olefin) Ligands.
    Rössler SL; Petrone DA; Carreira EM
    Acc Chem Res; 2019 Sep; 52(9):2657-2672. PubMed ID: 31243973
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fluorinated alcohols as promoters for the metal-free direct substitution reaction of allylic alcohols with nitrogenated, silylated, and carbon nucleophiles.
    Trillo P; Baeza A; Nájera C
    J Org Chem; 2012 Sep; 77(17):7344-54. PubMed ID: 22876815
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Selective synthesis of allylated oxime ethers and nitrones based on palladium-catalyzed allylic substitution of oximes.
    Miyabe H; Yoshida K; Reddy VK; Matsumura A; Takemoto Y
    J Org Chem; 2005 Jul; 70(14):5630-5. PubMed ID: 15989347
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Implicit solvent effects in the determination of Brønsted-Evans-Polanyi relationships for heterogeneously catalyzed reactions.
    Gomes JRB; Viñes F; Illas F; Fajín JLC
    Phys Chem Chem Phys; 2019 Aug; 21(32):17687-17695. PubMed ID: 31364629
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relative reactivity of peracids versus dioxiranes (DMDO and TFDO) in the epoxidation of alkenes. A combined experimental and theoretical analysis.
    Bach RD; Dmitrenko O; Adam W; Schambony S
    J Am Chem Soc; 2003 Jan; 125(4):924-34. PubMed ID: 12537490
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Philicities, Fugalities, and Equilibrium Constants.
    Mayr H; Ofial AR
    Acc Chem Res; 2016 May; 49(5):952-65. PubMed ID: 27108991
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Unlocking ylide reactivity in the metal-catalyzed allylic substitution reaction: stereospecific construction of primary allylic amines with aza-ylides.
    Evans PA; Clizbe EA
    J Am Chem Soc; 2009 Jul; 131(25):8722-3. PubMed ID: 19499919
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydroxylamines as oxygen atom nucleophiles in transition-metal-catalyzed allylic substitution.
    Miyabe H; Yoshida K; Yamauchi M; Takemoto Y
    J Org Chem; 2005 Mar; 70(6):2148-53. PubMed ID: 15760199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.