These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29806449)

  • 1. Nanoplasmonic Sensing Architectures for Decoding Membrane Curvature-Dependent Biomacromolecular Interactions.
    Ferhan AR; Jackman JA; Malekian B; Xiong K; Emilsson G; Park S; Dahlin AB; Cho NJ
    Anal Chem; 2018 Jun; 90(12):7458-7466. PubMed ID: 29806449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the Interaction of Dielectric Nanoparticles with Supported Lipid Membrane Coatings on Nanoplasmonic Arrays.
    Ferhan AR; Ma GJ; Jackman JA; Sut TN; Park JH; Cho NJ
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoplasmonic sensors for biointerfacial science.
    Jackman JA; Rahim Ferhan A; Cho NJ
    Chem Soc Rev; 2017 Jun; 46(12):3615-3660. PubMed ID: 28383083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Comparison of Protein Adsorption and Conformational Changes on Dielectric-Coated Nanoplasmonic Sensing Arrays.
    Ferhan AR; Jackman JA; Sut TN; Cho NJ
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29690554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template.
    Jonsson MP; Jönsson P; Dahlin AB; Höök F
    Nano Lett; 2007 Nov; 7(11):3462-8. PubMed ID: 17902726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of Quartz Crystal Microbalance-Dissipation and Reflection-Mode Localized Surface Plasmon Resonance Sensors for Biomacromolecular Interaction Analysis.
    Ferhan AR; Jackman JA; Cho NJ
    Anal Chem; 2016 Dec; 88(24):12524-12531. PubMed ID: 28193076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curved Membrane Mimics for Quantitative Probing of Protein-Membrane Interactions by Surface Plasmon Resonance.
    Malinick AS; Stuart DD; Lambert AS; Cheng Q
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):84-94. PubMed ID: 38128131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indirect Nanoplasmonic Sensing Platform for Monitoring Temperature-Dependent Protein Adsorption.
    Jackman JA; Ferhan AR; Yoon BK; Park JH; Zhdanov VP; Cho NJ
    Anal Chem; 2017 Dec; 89(23):12976-12983. PubMed ID: 29111680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoplasmonic Ruler for Measuring Separation Distance between Supported Lipid Bilayers and Oxide Surfaces.
    Ferhan AR; Špačková B; Jackman JA; Ma GJ; Sut TN; Homola J; Cho NJ
    Anal Chem; 2018 Nov; 90(21):12503-12511. PubMed ID: 30272950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable occurrence of free-standing lipid membranes on nanograting structured supports.
    Peng PY; Chiang PC; Chao L
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12261-9. PubMed ID: 24988277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature.
    Junesch J; Emilsson G; Xiong K; Kumar S; Sannomiya T; Pace H; Vörös J; Oh SH; Bally M; Dahlin AB
    Nanoscale; 2015 Oct; 7(37):15080-5. PubMed ID: 26351000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing.
    Otte MA; Sepúlveda B; Ni W; Juste JP; Liz-Marzán LM; Lechuga LM
    ACS Nano; 2010 Jan; 4(1):349-57. PubMed ID: 19947647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing Spatial Proximity of Supported Lipid Bilayers to Silica Surfaces by Localized Surface Plasmon Resonance Sensing.
    Ferhan AR; Jackman JA; Cho NJ
    Anal Chem; 2017 Apr; 89(7):4301-4308. PubMed ID: 28293950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoplasmonic Sensor Detects Preferential Binding of IRSp53 to Negative Membrane Curvature.
    Emilsson G; Röder E; Malekian B; Xiong K; Manzi J; Tsai FC; Cho NJ; Bally M; Dahlin A
    Front Chem; 2019; 7():1. PubMed ID: 30778383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single vesicle analysis reveals nanoscale membrane curvature selective pore formation in lipid membranes by an antiviral α-helical peptide.
    Tabaei SR; Rabe M; Zhdanov VP; Cho NJ; Höök F
    Nano Lett; 2012 Nov; 12(11):5719-25. PubMed ID: 23092308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobile lipid bilayers on gold surfaces through structure-induced lipid vesicle rupture.
    Peng PY; Chiang PC; Chao L
    Langmuir; 2015 Apr; 31(13):3904-11. PubMed ID: 25746237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential mechanisms for calcium-dependent protein/membrane association as evidenced from SPR-binding studies on supported biomimetic membranes.
    Rossi C; Homand J; Bauche C; Hamdi H; Ladant D; Chopineau J
    Biochemistry; 2003 Dec; 42(51):15273-83. PubMed ID: 14690437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing.
    Jonsson MP; Dahlin AB; Feuz L; Petronis S; Höök F
    Anal Chem; 2010 Mar; 82(5):2087-94. PubMed ID: 20128623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(dimethylsiloxane)-coated sensor devices for the formation of supported lipid bilayers and the subsequent study of membrane interactions.
    Shahal T; Melzak KA; Lowe CR; Gizeli E
    Langmuir; 2008 Oct; 24(19):11268-75. PubMed ID: 18729340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supported lipid bilayers with controlled curvature via colloidal lithography.
    Sundh M; Manandhar M; Svedhem S; Sutherland DS
    IEEE Trans Nanobioscience; 2011 Sep; 10(3):187-93. PubMed ID: 21926028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.