These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29806449)

  • 21. Development of a Membrane Curvature-Sensing Peptide Based on a Structure-Activity Correlation Study.
    Kawano K; Ogushi M; Masuda T; Futaki S
    Chem Pharm Bull (Tokyo); 2019 Oct; 67(10):1131-1138. PubMed ID: 31316036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Membrane curvature based lipid sorting using a nanoparticle patterned substrate.
    Black JC; Cheney PP; Campbell T; Knowles MK
    Soft Matter; 2014 Mar; 10(12):2016-23. PubMed ID: 24652483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pH-Modulated Nanoarchitectonics for Enhancement of Multivalency-Induced Vesicle Shape Deformation at Receptor-Presenting Lipid Membrane Interfaces.
    Park H; Sut TN; Ferhan AR; Yoon BK; Zhdanov VP; Cho NJ; Jackman JA
    Langmuir; 2023 Jun; 39(23):8297-8305. PubMed ID: 37267480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimizing the Formation of Supported Lipid Bilayers from Bicellar Mixtures.
    Kolahdouzan K; Jackman JA; Yoon BK; Kim MC; Johal MS; Cho NJ
    Langmuir; 2017 May; 33(20):5052-5064. PubMed ID: 28457139
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoplasmonic Biosensor Using Localized Surface Plasmon Resonance Spectroscopy for Biochemical Detection.
    Zhang D; Zhang Q; Lu Y; Yao Y; Li S; Liu Q
    Methods Mol Biol; 2017; 1571():89-107. PubMed ID: 28281251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trends and challenges of refractometric nanoplasmonic biosensors: a review.
    Estevez MC; Otte MA; Sepulveda B; Lechuga LM
    Anal Chim Acta; 2014 Jan; 806():55-73. PubMed ID: 24331040
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biophysical investigations with MARCKS-ED: dissecting the molecular mechanism of its curvature sensing behaviors.
    Morton LA; Tamura R; de Jesus AJ; Espinoza A; Yin H
    Biochim Biophys Acta; 2014 Dec; 1838(12):3137-3144. PubMed ID: 25195712
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling lipid membrane architecture for tunable nanoplasmonic biosensing.
    Zan GH; Jackman JA; Kim SO; Cho NJ
    Small; 2014 Dec; 10(23):4828-32. PubMed ID: 25079046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time nanoplasmonic sensing of three-dimensional morphological changes in a supported lipid bilayer and antimicrobial testing applications.
    Yoon BK; Park H; Zhdanov VP; Jackman JA; Cho NJ
    Biosens Bioelectron; 2021 Feb; 174():112768. PubMed ID: 33288427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Topographically Flat Nanoplasmonic Sensor Chips for Biosensing and Materials Science.
    Nugroho FAA; Frost R; Antosiewicz TJ; Fritzsche J; Larsson Langhammer EM; Langhammer C
    ACS Sens; 2017 Jan; 2(1):119-127. PubMed ID: 28722444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of supported lipid bilayers at surfaces with controlled curvatures: influence of lipid charge.
    Sundh M; Svedhem S; Sutherland DS
    J Phys Chem B; 2011 Jun; 115(24):7838-48. PubMed ID: 21630649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Substrate-supported phospholipid membranes studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy.
    Tawa K; Morigaki K
    Biophys J; 2005 Oct; 89(4):2750-8. PubMed ID: 16040759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterizing α-helical peptide aggregation on supported lipid membranes using microcantilevers.
    Wang J; Liu KW; Biswal SL
    Anal Chem; 2014 Oct; 86(20):10084-90. PubMed ID: 25162952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Curvature sensing by cardiolipin in simulated buckled membranes.
    Elías-Wolff F; Lindén M; Lyubartsev AP; Brandt EG
    Soft Matter; 2019 Jan; 15(4):792-802. PubMed ID: 30644502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conformational Changes in C-Reactive Protein Affect Binding to Curved Membranes in a Lipid Bilayer Model of the Apoptotic Cell Surface.
    Alnaas AA; Moon CL; Alton M; Reed SM; Knowles MK
    J Phys Chem B; 2017 Mar; 121(12):2631-2639. PubMed ID: 28225631
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immobilization of natural lipid biomembranes and their interactions with choline carboxylates. A nanoplasmonic sensing study.
    Duša F; Chen W; Witos J; Rantamäki AH; King AWT; Sklavounos E; Roth M; Wiedmer SK
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183115. PubMed ID: 31704086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amyloid-β Peptide Triggers Membrane Remodeling in Supported Lipid Bilayers Depending on Their Hydrophobic Thickness.
    Meker S; Chin H; Sut TN; Cho NJ
    Langmuir; 2018 Aug; 34(32):9548-9560. PubMed ID: 30021071
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of head group and curvature on binding of the antimicrobial peptide tritrpticin to lipid membranes.
    Bozelli JC; Sasahara ET; Pinto MR; Nakaie CR; Schreier S
    Chem Phys Lipids; 2012 May; 165(4):365-73. PubMed ID: 22209923
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays.
    Chen P; Chung MT; McHugh W; Nidetz R; Li Y; Fu J; Cornell TT; Shanley TP; Kurabayashi K
    ACS Nano; 2015; 9(4):4173-81. PubMed ID: 25790830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Nanobar-Supported Lipid Bilayer System for the Study of Membrane Curvature Sensing Proteins in vitro.
    Miao X; Wu J; Zhao W
    J Vis Exp; 2022 Nov; (189):. PubMed ID: 36533817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.