These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 29806736)
1. Gut Glucosinolate Metabolism and Isothiocyanate Production. Narbad A; Rossiter JT Mol Nutr Food Res; 2018 Sep; 62(18):e1700991. PubMed ID: 29806736 [TBL] [Abstract][Full Text] [Related]
2. Microbiota: a mediator to transform glucosinolate precursors in cruciferous vegetables to the active isothiocyanates. Tian S; Liu X; Lei P; Zhang X; Shan Y J Sci Food Agric; 2018 Mar; 98(4):1255-1260. PubMed ID: 28869285 [TBL] [Abstract][Full Text] [Related]
3. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Winde I; Wittstock U Phytochemistry; 2011 Sep; 72(13):1566-75. PubMed ID: 21316065 [TBL] [Abstract][Full Text] [Related]
4. Influence of plant and bacterial myrosinase activity on the metabolic fate of glucosinolates in gnotobiotic rats. Rouzaud G; Rabot S; Ratcliffe B; Duncan AJ Br J Nutr; 2003 Aug; 90(2):395-404. PubMed ID: 12908900 [TBL] [Abstract][Full Text] [Related]
5. Myrosinase Compatible Simultaneous Determination of Glucosinolates and Allyl Isothiocyanate by Capillary Electrophoresis Micellar Electrokinetic Chromatography (CE-MEKC). Gonda S; Kiss-Szikszai A; Szűcs Z; Nguyen NM; Vasas G Phytochem Anal; 2016 May; 27(3-4):191-8. PubMed ID: 27313156 [TBL] [Abstract][Full Text] [Related]
6. In vitro antiproliferative activity of isothiocyanates and nitriles generated by myrosinase-mediated hydrolysis of glucosinolates from seeds of cruciferous vegetables. Nastruzzi C; Cortesi R; Esposito E; Menegatti E; Leoni O; Iori R; Palmieri S J Agric Food Chem; 2000 Aug; 48(8):3572-5. PubMed ID: 10956152 [TBL] [Abstract][Full Text] [Related]
7. In vitro metabolic conversion of the organic breakdown products of glucosinolate to goitrogenic thiocyanate anion. Lee J; Kwon H J Sci Food Agric; 2015 Aug; 95(11):2244-51. PubMed ID: 25271103 [TBL] [Abstract][Full Text] [Related]
8. Nitrile-specifier proteins involved in glucosinolate hydrolysis in Arabidopsis thaliana. Kissen R; Bones AM J Biol Chem; 2009 May; 284(18):12057-70. PubMed ID: 19224919 [TBL] [Abstract][Full Text] [Related]
9. The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Lambrix V; Reichelt M; Mitchell-Olds T; Kliebenstein DJ; Gershenzon J Plant Cell; 2001 Dec; 13(12):2793-807. PubMed ID: 11752388 [TBL] [Abstract][Full Text] [Related]
10. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds. Williams DJ; Critchley C; Pun S; Chaliha M; O'Hare TJ Phytochemistry; 2009; 70(11-12):1401-9. PubMed ID: 19747700 [TBL] [Abstract][Full Text] [Related]
11. Glucosinolates: bioavailability and importance to health. Johnson IT Int J Vitam Nutr Res; 2002 Jan; 72(1):26-31. PubMed ID: 11887749 [TBL] [Abstract][Full Text] [Related]
12. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. Burow M; Markert J; Gershenzon J; Wittstock U FEBS J; 2006 Jun; 273(11):2432-46. PubMed ID: 16704417 [TBL] [Abstract][Full Text] [Related]
13. Degradation of Biofumigant Isothiocyanates and Allyl Glucosinolate in Soil and Their Effects on the Microbial Community Composition. Hanschen FS; Yim B; Winkelmann T; Smalla K; Schreiner M PLoS One; 2015; 10(7):e0132931. PubMed ID: 26186695 [TBL] [Abstract][Full Text] [Related]
14. The phytopathogenic fungus Sclerotinia sclerotiorum detoxifies plant glucosinolate hydrolysis products via an isothiocyanate hydrolase. Chen J; Ullah C; Reichelt M; Beran F; Yang ZL; Gershenzon J; Hammerbacher A; Vassão DG Nat Commun; 2020 Jun; 11(1):3090. PubMed ID: 32555161 [TBL] [Abstract][Full Text] [Related]
15. Lactic acid bacteria convert glucosinolates to nitriles efficiently yet differently from enterobacteriaceae. Mullaney JA; Kelly WJ; McGhie TK; Ansell J; Heyes JA J Agric Food Chem; 2013 Mar; 61(12):3039-46. PubMed ID: 23461529 [TBL] [Abstract][Full Text] [Related]
16. Endophytic fungi from the roots of horseradish (Armoracia rusticana) and their interactions with the defensive metabolites of the glucosinolate - myrosinase - isothiocyanate system. Szűcs Z; Plaszkó T; Cziáky Z; Kiss-Szikszai A; Emri T; Bertóti R; Sinka LT; Vasas G; Gonda S BMC Plant Biol; 2018 May; 18(1):85. PubMed ID: 29743024 [TBL] [Abstract][Full Text] [Related]
17. Hydrolysis of glucosinolates to isothiocyanates after ingestion of raw or microwaved cabbage by human volunteers. Rouzaud G; Young SA; Duncan AJ Cancer Epidemiol Biomarkers Prev; 2004 Jan; 13(1):125-31. PubMed ID: 14744743 [TBL] [Abstract][Full Text] [Related]
18. Kinetics of glucosinolate hydrolysis by myrosinase in Brassicaceae tissues: A high-performance liquid chromatography approach. Pardini A; Tamasi G; De Rocco F; Bonechi C; Consumi M; Leone G; Magnani A; Rossi C Food Chem; 2021 Sep; 355():129634. PubMed ID: 33799240 [TBL] [Abstract][Full Text] [Related]
19. Epithiospecifier protein activity in broccoli: the link between terminal alkenyl glucosinolates and sulphoraphane nitrile. Williams DJ; Critchley C; Pun S; Nottingham S; O'Hare TJ Phytochemistry; 2008 Nov; 69(16):2765-73. PubMed ID: 18977005 [TBL] [Abstract][Full Text] [Related]
20. Effects of glucosinolates and their enzymatic hydrolysis products via myrosinase on the root-knot nematode Meloidogyne incognita (Kofoid et White) Chitw. Lazzeri L; Curto G; Leoni O; Dallavalle E J Agric Food Chem; 2004 Nov; 52(22):6703-7. PubMed ID: 15506804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]