These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 29806874)

  • 1. Fabrication of Photonic Bandgap Materials by Shifting Double Frameworks.
    Sheng Q; Mao W; Han L; Che S
    Chemistry; 2018 Nov; 24(66):17389-17396. PubMed ID: 29806874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Shifted Double-Diamond Titania Scaffold.
    Li H; Liu Y; Cao X; Han L; Jiang C; Che S
    Angew Chem Int Ed Engl; 2017 Jan; 56(3):806-811. PubMed ID: 27958679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales.
    Saranathan V; Osuji CO; Mochrie SG; Noh H; Narayanan S; Sandy A; Dufresne ER; Prum RO
    Proc Natl Acad Sci U S A; 2010 Jun; 107(26):11676-81. PubMed ID: 20547870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete Photonic Band Gaps with Nonfrustrated ABC Bottlebrush Block Polymers.
    Lequieu J; Quah T; Delaney KT; Fredrickson GH
    ACS Macro Lett; 2020 Jul; 9(7):1074-1080. PubMed ID: 35648618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of single gyroid structure in self-assembly of block copolymer with inorganic precursors.
    Bao C; Che S; Han L
    J Hazard Mater; 2021 Jan; 402():123538. PubMed ID: 33254739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmed Self-Assembly of Single Colloidal Gyroids for Chiral Photonic Crystals.
    Flavell W; Neophytou A; Demetriadou A; Albrecht T; Chakrabarti D
    Adv Mater; 2023 Jun; 35(23):e2211197. PubMed ID: 36864647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-Demand Design of Tunable Complete Photonic Band Gaps based on Bloch Mode Analysis.
    Li S; Lin H; Meng F; Moss D; Huang X; Jia B
    Sci Rep; 2018 Sep; 8(1):14283. PubMed ID: 30250273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic assembly route to colloidal responsive photonic nanostructures.
    He L; Wang M; Ge J; Yin Y
    Acc Chem Res; 2012 Sep; 45(9):1431-40. PubMed ID: 22578015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diamond-structured photonic crystals.
    Maldovan M; Thomas EL
    Nat Mater; 2004 Sep; 3(9):593-600. PubMed ID: 15343291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal diamond.
    He M; Gales JP; Ducrot É; Gong Z; Yi GR; Sacanna S; Pine DJ
    Nature; 2020 Sep; 585(7826):524-529. PubMed ID: 32968261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryptic iridescence in a fossil weevil generated by single diamond photonic crystals.
    McNamara ME; Saranathan V; Locatelli ER; Noh H; Briggs DE; Orr PJ; Cao H
    J R Soc Interface; 2014 Nov; 11(100):20140736. PubMed ID: 25185581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design principles for photonic crystals based on plasmonic nanoparticle superlattices.
    Sun L; Lin H; Kohlstedt KL; Schatz GC; Mirkin CA
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):7242-7247. PubMed ID: 29941604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide.
    Marichy C; Muller N; Froufe-Pérez LS; Scheffold F
    Sci Rep; 2016 Feb; 6():21818. PubMed ID: 26911540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic amorphous diamond structure with a 3D photonic band gap.
    Edagawa K; Kanoko S; Notomi M
    Phys Rev Lett; 2008 Jan; 100(1):013901. PubMed ID: 18232763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shifting networks to achieve subgroup symmetry properties.
    Hsueh HY; Ling YC; Wang HF; Chien LY; Hung YC; Thomas EL; Ho RM
    Adv Mater; 2014 May; 26(20):3225-9. PubMed ID: 24677175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct wide-angle measurement of a photonic band structure in a three-dimensional photonic crystal using infrared Fourier imaging spectroscopy.
    Chen L; Lopez-Garcia M; Taverne MP; Zheng X; Ho YD; Rarity J
    Opt Lett; 2017 Apr; 42(8):1584-1587. PubMed ID: 28409804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trapping Structural Coloration by a Bioinspired Gyroid Microstructure in Solid State.
    Lin EL; Hsu WL; Chiang YW
    ACS Nano; 2018 Jan; 12(1):485-493. PubMed ID: 29240399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring for 3D photonic bandgap structures in the 11 f.c.c. space groups.
    Maldovan M; Ullal CK; Carter WC; Thomas EL
    Nat Mater; 2003 Oct; 2(10):664-7. PubMed ID: 12970758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colloidal cubic diamond photonic crystals through cooperative self-assembly.
    Sun YW; Li ZW; Chen ZQ; Zhu YL; Sun ZY
    Soft Matter; 2022 Mar; 18(13):2654-2662. PubMed ID: 35311843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction.
    de Sterke CM; Busch K
    Opt Express; 2001 Jan; 8(3):166. PubMed ID: 19417800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.