BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 29806991)

  • 21. Topographic distribution of retinal neovascularization in proliferative diabetic retinopathy using ultra-wide field angiography.
    Nidhi V; Verma S; Shaikh N; Azad SV; Chawla R; Venkatesh P; Vohra R; Kumar V
    Indian J Ophthalmol; 2023 Aug; 71(8):3080-3084. PubMed ID: 37530284
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distribution of Diabetic Neovascularization on Ultra-Widefield Fluorescein Angiography and on Simulated Widefield OCT Angiography.
    Russell JF; Flynn HW; Sridhar J; Townsend JH; Shi Y; Fan KC; Scott NL; Hinkle JW; Lyu C; Gregori G; Russell SR; Rosenfeld PJ
    Am J Ophthalmol; 2019 Nov; 207():110-120. PubMed ID: 31194952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Proposed Classification of Intraretinal Microvascular Abnormalities in Diabetic Retinopathy Following Panretinal Photocoagulation.
    Shimouchi A; Ishibazawa A; Ishiko S; Omae T; Ro-Mase T; Yanagi Y; Yoshida A
    Invest Ophthalmol Vis Sci; 2020 Mar; 61(3):34. PubMed ID: 32191287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Different Scan Protocols Affect the Detection Rates of Diabetic Retinopathy Lesions by Wide-Field Swept-Source Optical Coherence Tomography Angiography.
    Zhu Y; Cui Y; Wang JC; Lu Y; Zeng R; Katz R; Wu DM; Eliott D; Vavvas DG; Husain D; Miller JW; Kim LA; Miller JB
    Am J Ophthalmol; 2020 Jul; 215():72-80. PubMed ID: 32205122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Longitudinal Wide-Field Swept-Source OCT Angiography of Neovascularization in Proliferative Diabetic Retinopathy after Panretinal Photocoagulation.
    Russell JF; Shi Y; Hinkle JW; Scott NL; Fan KC; Lyu C; Gregori G; Rosenfeld PJ
    Ophthalmol Retina; 2019 Apr; 3(4):350-361. PubMed ID: 31014688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Practical Utility of Widefield OCT Angiography to Detect Retinal Neovascularization in Eyes with Proliferative Diabetic Retinopathy.
    Hamada M; Hirai K; Wakabayashi T; Ishida Y; Fukushima M; Kamei M; Tsuboi K
    Ophthalmol Retina; 2024 May; 8(5):481-489. PubMed ID: 38008219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Visualization of Retinal Neovascularization with Optical Coherence Tomography Angiography in Comparison with Fluorescein Angiography].
    Enders C; Baeurle F; Lang GE; Dreyhaupt J; Trick S; Kilani A; Lang GK; Werner JU
    Klin Monbl Augenheilkd; 2019 Nov; 236(11):1325-1330. PubMed ID: 31711250
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retinal Nonperfusion in Proliferative Diabetic Retinopathy Before and After Panretinal Photocoagulation Assessed by Widefield OCT Angiography.
    Russell JF; Al-Khersan H; Shi Y; Scott NL; Hinkle JW; Fan KC; Lyu C; Feuer WJ; Gregori G; Rosenfeld PJ
    Am J Ophthalmol; 2020 May; 213():177-185. PubMed ID: 32006481
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical coherence tomography angiography for the detection and evaluation of ptic disc neovascularization: a retrospective, observational study.
    Wang XN; Zhou J; Cai X; Li T; Long D; Wu Q
    BMC Ophthalmol; 2022 Mar; 22(1):125. PubMed ID: 35296271
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wide-field swept-source OCT angiography (23 × 20 mm) for detecting retinal neovascularization in eyes with proliferative diabetic retinopathy.
    Hirano T; Hoshiyama K; Takahashi Y; Murata T
    Graefes Arch Clin Exp Ophthalmol; 2023 Feb; 261(2):339-344. PubMed ID: 36303061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. VASCULAR ABNORMALITIES IN DIABETIC RETINOPATHY ASSESSED WITH SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY WIDEFIELD IMAGING.
    Schaal KB; Munk MR; Wyssmueller I; Berger LE; Zinkernagel MS; Wolf S
    Retina; 2019 Jan; 39(1):79-87. PubMed ID: 29135803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultra-widefield color fundus photography combined with high-speed ultra-widefield swept-source optical coherence tomography angiography for non-invasive detection of lesions in diabetic retinopathy.
    Li J; Wei D; Mao M; Li M; Liu S; Li F; Chen L; Liu M; Leng H; Wang Y; Ning X; Liu Y; Dong W; Zhong J
    Front Public Health; 2022; 10():1047608. PubMed ID: 36408020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of Progressive Neovascularization in Diabetic Retinopathy Using Widefield OCT Angiography.
    Shiraki A; Sakimoto S; Eguchi M; Kanai M; Hara C; Fukushima Y; Nishida K; Kawasaki R; Sakaguchi H; Nishida K
    Ophthalmol Retina; 2022 Feb; 6(2):153-160. PubMed ID: 34051418
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DISTINGUISHING INTRARETINAL MICROVASCULAR ABNORMALITIES FROM RETINAL NEOVASCULARIZATION USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.
    Arya M; Sorour O; Chaudhri J; Alibhai Y; Waheed NK; Duker JS; Baumal CR
    Retina; 2020 Sep; 40(9):1686-1695. PubMed ID: 31613839
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Widefield Swept-Source Optical Coherence Tomography Angiography of Proliferative Diabetic Retinopathy.
    Motulsky EH; Liu G; Shi Y; Zheng F; Flynn HW; Gregori G; Rosenfeld PJ
    Ophthalmic Surg Lasers Imaging Retina; 2019 Aug; 50(8):474-484. PubMed ID: 31415693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ULTRAHIGH SPEED SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF RETINAL AND CHORIOCAPILLARIS ALTERATIONS IN DIABETIC PATIENTS WITH AND WITHOUT RETINOPATHY.
    Choi W; Waheed NK; Moult EM; Adhi M; Lee B; De Carlo T; Jayaraman V; Baumal CR; Duker JS; Fujimoto JG
    Retina; 2017 Jan; 37(1):11-21. PubMed ID: 27557084
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reevaluating the definition of intraretinal microvascular abnormalities and neovascularization elsewhere in diabetic retinopathy using optical coherence tomography and fluorescein angiography.
    Lee CS; Lee AY; Sim DA; Keane PA; Mehta H; Zarranz-Ventura J; Fruttiger M; Egan CA; Tufail A
    Am J Ophthalmol; 2015 Jan; 159(1):101-10.e1. PubMed ID: 25284762
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NOVEL THREE TYPES OF NEOVASCULARIZATION ELSEWHERE DETERMINE THE DIFFERENTIAL CLINICAL FEATURES OF PROLIFERATIVE DIABETIC RETINOPATHY.
    Pan J; Chen F; Chen D; Yang X; Wang J; Chen Z; He X; Zhou T; Zheng J; Chen H
    Retina; 2021 Jun; 41(6):1265-1274. PubMed ID: 33136976
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical Coherence Tomography Angiography in Diabetic Retinopathy: A Prospective Pilot Study.
    Ishibazawa A; Nagaoka T; Takahashi A; Omae T; Tani T; Sogawa K; Yokota H; Yoshida A
    Am J Ophthalmol; 2015 Jul; 160(1):35-44.e1. PubMed ID: 25896459
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantifying Microvascular Abnormalities With Increasing Severity of Diabetic Retinopathy Using Optical Coherence Tomography Angiography.
    Nesper PL; Roberts PK; Onishi AC; Chai H; Liu L; Jampol LM; Fawzi AA
    Invest Ophthalmol Vis Sci; 2017 May; 58(6):BIO307-BIO315. PubMed ID: 29059262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.