BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 29807084)

  • 1. pH-Dependent intestine-targeted delivery potency of the O-carboxymethyl chitosan - gum Arabic coacervates.
    Xiao JX; Zhu CP; Cheng LY; Yang J; Huang GQ
    Int J Biol Macromol; 2018 Oct; 117():315-322. PubMed ID: 29807084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genipin-crosslinked O-carboxymethyl chitosan-gum Arabic coacervate as a pH-sensitive delivery system and microstructure characterization.
    Huang GQ; Cheng LY; Xiao JX; Wang SQ; Han XN
    J Biomater Appl; 2016 Aug; 31(2):193-204. PubMed ID: 27231264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intestine-targeted delivery potency of the O-carboxymethyl chitosan-gum Arabic coacervate: Effects of coacervation acidity and possible mechanism.
    Huang GQ; Liu LN; Han XN; Xiao JX
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():423-429. PubMed ID: 28629036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intestine-targeted delivery potency of O-carboxymethyl chitosan-coated layer-by-layer microcapsules: An in vitro and in vivo evaluation.
    Huang GQ; Zhang ZK; Cheng LY; Xiao JX
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110129. PubMed ID: 31546375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of coacervation conditions on the viscoelastic properties of N,O-carboxymethyl chitosan - gum Arabic coacervates.
    Huang GQ; Du YL; Xiao JX; Wang GY
    Food Chem; 2017 Aug; 228():236-242. PubMed ID: 28317718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation and evaluation of casein-gum arabic coacervates via pH-dependent complexation using fast acidification.
    Li Y; Zhang X; Sun N; Wang Y; Lin S
    Int J Biol Macromol; 2018 Dec; 120(Pt A):783-788. PubMed ID: 30171945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex coacervation of carboxymethyl konjac glucomannan and chitosan and coacervate characterization.
    Xiao JX; Wang LH; Xu TC; Huang GQ
    Int J Biol Macromol; 2019 Feb; 123():436-445. PubMed ID: 30439438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex coacervation with whey protein isolate and gum arabic for the microencapsulation of omega-3 rich tuna oil.
    Eratte D; Wang B; Dowling K; Barrow CJ; Adhikari BP
    Food Funct; 2014 Nov; 5(11):2743-50. PubMed ID: 25008146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-coacervation of carboxymethyl chitosan as a pH-responsive encapsulation and delivery strategy.
    Jing H; Du X; Mo L; Wang H
    Int J Biol Macromol; 2021 Dec; 192():1169-1177. PubMed ID: 34678379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of microcapsules by complex coacervation of gum Arabic and chitosan.
    Butstraen C; Salaün F
    Carbohydr Polym; 2014 Jan; 99():608-16. PubMed ID: 24274550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery.
    Chen SC; Wu YC; Mi FL; Lin YH; Yu LC; Sung HW
    J Control Release; 2004 Apr; 96(2):285-300. PubMed ID: 15081219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polysaccharide-based hydrogels for the immobilization and controlled release of bovine serum albumin.
    Varnier K; Vieira T; Wolf M; Belfiore LA; Tambourgi EB; Paulino AT
    Int J Biol Macromol; 2018 Dec; 120(Pt A):522-528. PubMed ID: 30165142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs.
    Lin YH; Liang HF; Chung CK; Chen MC; Sung HW
    Biomaterials; 2005 May; 26(14):2105-13. PubMed ID: 15576185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gum arabic-chitosan complex coacervation.
    Espinosa-Andrews H; Báez-González JG; Cruz-Sosa F; Vernon-Carter EJ
    Biomacromolecules; 2007 Apr; 8(4):1313-8. PubMed ID: 17375951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation on complex coacervation between fish skin gelatin from cold-water fish and gum arabic: Phase behavior, thermodynamic, and structural properties.
    Li Y; Zhang X; Zhao Y; Ding J; Lin S
    Food Res Int; 2018 May; 107():596-604. PubMed ID: 29580524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of redispersible polyelectrolyte complex nanoparticles from gallic acid-chitosan conjugate and gum arabic.
    Hu Q; Wang T; Zhou M; Xue J; Luo Y
    Int J Biol Macromol; 2016 Nov; 92():812-819. PubMed ID: 27475234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex coacervates obtained from peptide leucine and gum arabic: formation and characterization.
    Gulão Eda S; de Souza CJ; Andrade CT; Garcia-Rojas EE
    Food Chem; 2016 Mar; 194():680-6. PubMed ID: 26471607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous formation of small sized albumin/acacia coacervate particles.
    Burgess DJ; Singh ON
    J Pharm Pharmacol; 1993 Jul; 45(7):586-91. PubMed ID: 8105049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Preparation and quality evaluation of microcapsules of volatile oil from Ledum palustre].
    Lv M
    Zhong Yao Cai; 2014 Apr; 37(4):675-8. PubMed ID: 25345143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microencapsulation of oils using whey protein/gum Arabic coacervates.
    Weinbreck F; Minor M; de Kruif CG
    J Microencapsul; 2004 Sep; 21(6):667-79. PubMed ID: 15762323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.