These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 29807251)
1. Multiscale smeared finite element model for mass transport in biological tissue: From blood vessels to cells and cellular organelles. Kojic M; Milosevic M; Simic V; Koay EJ; Kojic N; Ziemys A; Ferrari M Comput Biol Med; 2018 Aug; 99():7-23. PubMed ID: 29807251 [TBL] [Abstract][Full Text] [Related]
2. A composite smeared finite element for mass transport in capillary systems and biological tissue. Kojic M; Milosevic M; Simic V; Koay EJ; Fleming JB; Nizzero S; Kojic N; Ziemys A; Ferrari M Comput Methods Appl Mech Eng; 2017 Sep; 324():413-437. PubMed ID: 29200531 [TBL] [Abstract][Full Text] [Related]
3. Smeared multiscale finite element model for electrophysiology and ionic transport in biological tissue. Kojic M; Milosevic M; Simic V; Geroski V; Ziemys A; Filipovic N; Ferrari M Comput Biol Med; 2019 May; 108():288-304. PubMed ID: 31015049 [TBL] [Abstract][Full Text] [Related]
4. Extension of the composite smeared finite element (CSFE) to include lymphatic system in modeling mass transport in capillary systems and biological tissue. Kojic M; Milosevic M; Simic V; Koay EJ; Kojic N; Ziemys A; Ferrari M J Serbian Soc Comput Mech; 2017; 11(2):108-119. PubMed ID: 29782608 [TBL] [Abstract][Full Text] [Related]
5. Correction function for accuracy improvement of the Composite Smeared Finite Element for diffusive transport in biological tissue systems. Milosevic M; Simic V; Milicevic B; Koay EJ; Ferrari M; Ziemys A; Kojic M Comput Methods Appl Mech Eng; 2018 Aug; 338():97-116. PubMed ID: 30555187 [TBL] [Abstract][Full Text] [Related]
6. Smeared Multiscale Finite Element Models for Mass Transport and Electrophysiology Coupled to Muscle Mechanics. Kojic M; Milosevic M; Simic V; Milicevic B; Geroski V; Nizzero S; Ziemys A; Filipovic N; Ferrari M Front Bioeng Biotechnol; 2019; 7():381. PubMed ID: 31921800 [TBL] [Abstract][Full Text] [Related]
7. On the generality of the finite element modeling physical fields in biological systems by the multiscale smeared concept (Kojic transport model). Kojic M; Milosevic M; Simic V; Milicevic B; Terracciano R; Filgueira CS Heliyon; 2024 Mar; 10(5):e26354. PubMed ID: 38434281 [TBL] [Abstract][Full Text] [Related]
8. A novel composite smeared finite element for mechanics (CSFEM): Some applications. Simic V; Milosevic M; Milicevic V; Filipovic N; Kojic M Technol Health Care; 2023; 31(2):719-733. PubMed ID: 36314177 [TBL] [Abstract][Full Text] [Related]
9. Modeling of oxygen diffusion from the blood vessels to intracellular organelles. Popel AS; Goldman D; Vadapalli A Adv Exp Med Biol; 2003; 530():485-95. PubMed ID: 14562744 [TBL] [Abstract][Full Text] [Related]
10. Hybrid finite element-finite difference method for thermal analysis of blood vessels. Blanchard CH; Gutierrez G; White JA; Roemer RB Int J Hyperthermia; 2000; 16(4):341-53. PubMed ID: 10949130 [TBL] [Abstract][Full Text] [Related]
12. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot. Mithraratne K; Ho H; Hunter PJ; Fernandez JW Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1071-81. PubMed ID: 23027636 [TBL] [Abstract][Full Text] [Related]
13. Finite-element analysis of oxygen transport in the systemic capillaries. Sharan M; Singh B; Singh MP; Kumar P IMA J Math Appl Med Biol; 1991; 8(2):107-23. PubMed ID: 1779137 [TBL] [Abstract][Full Text] [Related]
14. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS. Vande Geest JP; Simon BR; Rigby PH; Newberg TP J Biomech Eng; 2011 Apr; 133(4):044502. PubMed ID: 21428686 [TBL] [Abstract][Full Text] [Related]
15. A parallel finite element simulator for ion transport through three-dimensional ion channel systems. Tu B; Chen M; Xie Y; Zhang L; Eisenberg B; Lu B J Comput Chem; 2013 Sep; 34(24):2065-78. PubMed ID: 23740647 [TBL] [Abstract][Full Text] [Related]
16. Modeling of diffusion with partitioning in stratum corneum using a finite element model. Barbero AM; Frasch HF Ann Biomed Eng; 2005 Sep; 33(9):1281-92. PubMed ID: 16133933 [TBL] [Abstract][Full Text] [Related]
17. Linking microvascular collapse to tissue hypoxia in a multiscale model of pressure ulcer initiation. Sree VD; Rausch MK; Tepole AB Biomech Model Mechanobiol; 2019 Dec; 18(6):1947-1964. PubMed ID: 31203488 [TBL] [Abstract][Full Text] [Related]
18. A Galerkin-type finite element solution for simulation of mass diffusion in the application of tissue engineering: heterogeneous and non-porous media. Mohammadi H; Mequanint K; Bahramian F Proc Inst Mech Eng H; 2010; 224(8):1005-17. PubMed ID: 20923117 [TBL] [Abstract][Full Text] [Related]
19. Numerical analysis of the impact of cytoskeletal actin filament density alterations onto the diffusive vesicle-mediated cell transport. Haspinger DC; Klinge S; Holzapfel GA PLoS Comput Biol; 2021 May; 17(5):e1008784. PubMed ID: 33939706 [TBL] [Abstract][Full Text] [Related]
20. A model of nitric oxide capillary exchange. Tsoukias NM; Popel AS Microcirculation; 2003 Dec; 10(6):479-95. PubMed ID: 14745461 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]