These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 29807624)
21. Pathophysiologically relevant in vitro tumor models for drug screening. Das V; Bruzzese F; Konečný P; Iannelli F; Budillon A; Hajdúch M Drug Discov Today; 2015 Jul; 20(7):848-55. PubMed ID: 25908576 [TBL] [Abstract][Full Text] [Related]
22. A Combined 3D Tissue Engineered In Vitro/In Silico Lung Tumor Model for Predicting Drug Effectiveness in Specific Mutational Backgrounds. Göttlich C; Müller LC; Kunz M; Schmitt F; Walles H; Walles T; Dandekar T; Dandekar G; Nietzer SL J Vis Exp; 2016 Apr; (110):e53885. PubMed ID: 27077967 [TBL] [Abstract][Full Text] [Related]
23. The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance. Breslin S; O'Driscoll L Oncotarget; 2016 Jul; 7(29):45745-45756. PubMed ID: 27304190 [TBL] [Abstract][Full Text] [Related]
24. High-Content Screening Comparison of Cancer Drug Accumulation and Distribution in Two-Dimensional and Three-Dimensional Culture Models of Head and Neck Cancer. Shan F; Close DA; Camarco DP; Johnston PA Assay Drug Dev Technol; 2018 Jan; 16(1):27-50. PubMed ID: 29215913 [TBL] [Abstract][Full Text] [Related]
25. Using high throughput microtissue culture to study the difference in prostate cancer cell behavior and drug response in 2D and 3D co-cultures. Mosaad E; Chambers K; Futrega K; Clements J; Doran MR BMC Cancer; 2018 May; 18(1):592. PubMed ID: 29793440 [TBL] [Abstract][Full Text] [Related]
26. Antitumor activity of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib (ZD1839, Iressa) in non-small cell lung cancer cell lines correlates with gene copy number and EGFR mutations but not EGFR protein levels. Helfrich BA; Raben D; Varella-Garcia M; Gustafson D; Chan DC; Bemis L; Coldren C; Barón A; Zeng C; Franklin WA; Hirsch FR; Gazdar A; Minna J; Bunn PA Clin Cancer Res; 2006 Dec; 12(23):7117-25. PubMed ID: 17145836 [TBL] [Abstract][Full Text] [Related]
27. 3-Dimensional micropillar drug screening identifies FGFR2-IIIC overexpression as a potential target in metastatic giant cell tumor. Kim ST; Kim J; Shin S; Kim SY; Lee D; Ku B; Shin YS; Kim J; Lee J Oncotarget; 2017 May; 8(22):36484-36491. PubMed ID: 28445128 [TBL] [Abstract][Full Text] [Related]
28. Beta-hairpin hydrogels as scaffolds for high-throughput drug discovery in three-dimensional cell culture. Worthington P; Drake KM; Li Z; Napper AD; Pochan DJ; Langhans SA Anal Biochem; 2017 Oct; 535():25-34. PubMed ID: 28757092 [TBL] [Abstract][Full Text] [Related]
29. Large-Scale Gene Expression Profiling Platform for Identification of Context-Dependent Drug Responses in Multicellular Tumor Spheroids. Senkowski W; Jarvius M; Rubin J; Lengqvist J; Gustafsson MG; Nygren P; Kultima K; Larsson R; Fryknäs M Cell Chem Biol; 2016 Nov; 23(11):1428-1438. PubMed ID: 27984028 [TBL] [Abstract][Full Text] [Related]
30. A 1536-Well 3D Viability Assay to Assess the Cytotoxic Effect of Drugs on Spheroids. Madoux F; Tanner A; Vessels M; Willetts L; Hou S; Scampavia L; Spicer TP SLAS Discov; 2017 Jun; 22(5):516-524. PubMed ID: 28346088 [TBL] [Abstract][Full Text] [Related]
31. Generation of Multicellular Tumor Spheroids with Microwell-Based Agarose Scaffolds for Drug Testing. Gong X; Lin C; Cheng J; Su J; Zhao H; Liu T; Wen X; Zhao P PLoS One; 2015; 10(6):e0130348. PubMed ID: 26090664 [TBL] [Abstract][Full Text] [Related]
32. Rapid prototyping of concave microwells for the formation of 3D multicellular cancer aggregates for drug screening. Tu TY; Wang Z; Bai J; Sun W; Peng WK; Huang RY; Thiery JP; Kamm RD Adv Healthc Mater; 2014 Apr; 3(4):609-16. PubMed ID: 23983140 [TBL] [Abstract][Full Text] [Related]
33. A simple, reliable method for high-throughput screening for diabetes drugs using 3D β-cell spheroids. Amin J; Ramachandran K; Williams SJ; Lee A; Novikova L; Stehno-Bittel L J Pharmacol Toxicol Methods; 2016; 82():83-89. PubMed ID: 27554916 [TBL] [Abstract][Full Text] [Related]
34. Activity of anticancer agents in a three-dimensional cell culture model. Nirmalanandhan VS; Duren A; Hendricks P; Vielhauer G; Sittampalam GS Assay Drug Dev Technol; 2010 Oct; 8(5):581-90. PubMed ID: 20662735 [TBL] [Abstract][Full Text] [Related]
35. Microbioreactors for high-throughput cytotoxicity assays. Yang ST; Zhang X; Wen Y Curr Opin Drug Discov Devel; 2008 Jan; 11(1):111-27. PubMed ID: 18175274 [TBL] [Abstract][Full Text] [Related]
37. Production of Uniform 3D Microtumors in Hydrogel Microwell Arrays for Measurement of Viability, Morphology, and Signaling Pathway Activation. Singh M; Close DA; Mukundan S; Johnston PA; Sant S Assay Drug Dev Technol; 2015 Nov; 13(9):570-83. PubMed ID: 26274587 [TBL] [Abstract][Full Text] [Related]
38. An Automatable Hydrogel Culture Platform for Evaluating Efficacy of Antibody-Based Therapeutics in Overcoming Chemoresistance. Kletzmayr A; Clement Frey F; Zimmermann M; Eberli D; Millan C Biotechnol J; 2020 May; 15(5):e1900439. PubMed ID: 32028540 [TBL] [Abstract][Full Text] [Related]
39. Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids. Kang J; Lee DW; Hwang HJ; Yeon SE; Lee MY; Kuh HJ Lab Chip; 2016 Jun; 16(12):2265-76. PubMed ID: 27194205 [TBL] [Abstract][Full Text] [Related]
40. A versatile 3D tissue matrix scaffold system for tumor modeling and drug screening. Rijal G; Li W Sci Adv; 2017 Sep; 3(9):e1700764. PubMed ID: 28924608 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]