These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 29808195)

  • 1. Origin of the moiré superlattice scale lateral force modulation of graphene on a transition metal substrate.
    Gao L; Chen X; Ma Y; Yan Y; Ma T; Su Y; Qiao L
    Nanoscale; 2018 Jun; 10(22):10576-10583. PubMed ID: 29808195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of substrate and tip characteristics on the surface friction of fluorinated graphene.
    Ma Y; Liu Z; Gao L; Yan Y; Qiao L
    RSC Adv; 2020 Mar; 10(18):10888-10896. PubMed ID: 35492954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic-Scale Variations of the Mechanical Response of 2D Materials Detected by Noncontact Atomic Force Microscopy.
    de la Torre B; Ellner M; Pou P; Nicoara N; Pérez R; Gómez-Rodríguez JM
    Phys Rev Lett; 2016 Jun; 116(24):245502. PubMed ID: 27367394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation of Moiré Superlattice in Twisted Monolayer-multilayer Graphene by Moving Nanobubbles.
    Ding P; Yan J; Wang J; Han X; Yang W; Chen H; Zhang D; Huang M; Zhao J; Yang S; Xue TT; Liu L; Dai Y; Hou Y; Zhang S; Xu X; Wang Y; Huang Y
    Nano Lett; 2024 Jul; 24(26):8208-8215. PubMed ID: 38913825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary force-induced superlattice variation atop a nanometer-wide graphene flake and its moiré origin studied by STM.
    Thomas LK; Reichling M
    Beilstein J Nanotechnol; 2019; 10():804-810. PubMed ID: 31019867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Symmetry Breaking and Anomalous Conductivity in a Double-Moiré Superlattice.
    Li Y; Xue M; Fan H; Gao CF; Shi Y; Liu Y; Watanabe K; Tanguchi T; Zhao Y; Wu F; Wang X; Shi Y; Guo W; Zhang Z; Fei Z; Li J
    Nano Lett; 2022 Aug; 22(15):6215-6222. PubMed ID: 35852915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of Corrugated Graphene Moiré Superstructures on Transition-Metal Surfaces.
    Zhang L; Ding F
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56674-56681. PubMed ID: 34784183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tune the chemical activity of graphene
    Ma Y; Gao L; Yan Y; Su Y; Qiao L
    RSC Adv; 2018 Mar; 8(21):11807-11812. PubMed ID: 35542797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal phthalocyanines interaction with Co mediated by a moiré graphene superlattice.
    Avvisati G; Gargiani P; Mondelli P; Presel F; Bignardi L; Baraldi A; Betti MG
    J Chem Phys; 2019 Feb; 150(5):054704. PubMed ID: 30736689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Moiré Superlattice Systems by Angle-Resolved Photoemission Spectroscopy.
    Li Y; Wan Q; Xu N
    Adv Mater; 2023 Sep; ():e2305175. PubMed ID: 37689836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain-driven Moiré superstructures of epitaxial graphene on transition metal surfaces.
    Merino P; Svec M; Pinardi AL; Otero G; Martín-Gago JA
    ACS Nano; 2011 Jul; 5(7):5627-34. PubMed ID: 21675741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-oriented moiré superstructures of graphene on Ir(111): experimental observations and theoretical models.
    Meng L; Wu R; Zhang L; Li L; Du S; Wang Y; Gao HJ
    J Phys Condens Matter; 2012 Aug; 24(31):314214. PubMed ID: 22820951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmons in graphene moiré superlattices.
    Ni GX; Wang H; Wu JS; Fei Z; Goldflam MD; Keilmann F; Özyilmaz B; Castro Neto AH; Xie XM; Fogler MM; Basov DN
    Nat Mater; 2015 Dec; 14(12):1217-22. PubMed ID: 26413987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust ultra-low-friction state of graphene via moiré superlattice confinement.
    Zheng X; Gao L; Yao Q; Li Q; Zhang M; Xie X; Qiao S; Wang G; Ma T; Di Z; Luo J; Wang X
    Nat Commun; 2016 Oct; 7():13204. PubMed ID: 27759019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging Graphene Moiré Superlattices via Scanning Kelvin Probe Microscopy.
    Yu J; Giridharagopal R; Li Y; Xie K; Li J; Cao T; Xu X; Ginger DS
    Nano Lett; 2021 Apr; 21(7):3280-3286. PubMed ID: 33749279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tug-of-war between corrugation and binding energy: revealing the formation of multiple moiré patterns on a strongly interacting graphene-metal system.
    Martín-Recio A; Romero-Muñiz C; Martínez-Galera AJ; Pou P; Pérez R; Gómez-Rodríguez JM
    Nanoscale; 2015 Jul; 7(26):11300-9. PubMed ID: 25988393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structure and imaging contrast of graphene moiré on metals.
    Voloshina EN; Fertitta E; Garhofer A; Mittendorfer F; Fonin M; Thissen A; Dedkov YS
    Sci Rep; 2013; 3():1072. PubMed ID: 23330062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multichannel scanning probe microscopy and spectroscopy of graphene moiré structures.
    Dedkov Y; Voloshina E
    Phys Chem Chem Phys; 2014 Mar; 16(9):3894-908. PubMed ID: 24457547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Generation of Moiré Superlattices in Doubly Aligned hBN/Graphene/hBN Heterostructures.
    Wang L; Zihlmann S; Liu MH; Makk P; Watanabe K; Taniguchi T; Baumgartner A; Schönenberger C
    Nano Lett; 2019 Apr; 19(4):2371-2376. PubMed ID: 30803238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-based heterostructures with moiré superlattice that preserve the Dirac cone: a first-principles study.
    Kong X; Li L; Peeters FM
    J Phys Condens Matter; 2019 Jun; 31(25):255302. PubMed ID: 30909168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.