These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 29808215)

  • 1. High-resolution mapping and recognition of lipid domains using AFM with toxin-derivatized probes.
    Dumitru AC; Conrard L; Lo Giudice C; Henriet P; Veiga-da-Cunha M; Derclaye S; Tyteca D; Alsteens D
    Chem Commun (Camb); 2018 Jun; 54(50):6903-6906. PubMed ID: 29808215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanomechanical recognition of sphingomyelin-rich membrane domains by atomic force microscopy.
    Wang T; Shogomori H; Hara M; Yamada T; Kobayashi T
    Biochemistry; 2012 Jan; 51(1):74-82. PubMed ID: 22148674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of Lipid Membrane Reorganization Induced by a Pore-Forming Toxin Using High-Speed Atomic Force Microscopy.
    Yilmaz N; Kobayashi T
    ACS Nano; 2015 Aug; 9(8):7960-7. PubMed ID: 26222645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy.
    Geisse NA; Cover TL; Henderson RM; Edwardson JM
    Biochem J; 2004 Aug; 381(Pt 3):911-7. PubMed ID: 15128269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time analysis of the effects of cholesterol on lipid raft behavior using atomic force microscopy.
    Lawrence JC; Saslowsky DE; Edwardson JM; Henderson RM
    Biophys J; 2003 Mar; 84(3):1827-32. PubMed ID: 12609884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature induced lipid membrane restructuring and changes in nanomechanics.
    Bhojoo U; Chen M; Zou S
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):700-709. PubMed ID: 29248477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined AFM and two-focus SFCS study of raft-exhibiting model membranes.
    Chiantia S; Ries J; Kahya N; Schwille P
    Chemphyschem; 2006 Nov; 7(11):2409-18. PubMed ID: 17051578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Young modulus of supported lipid membranes containing milk sphingomyelin in the gel, fluid or liquid-ordered phase, determined using AFM force spectroscopy.
    Et-Thakafy O; Guyomarc'h F; Lopez C
    Biochim Biophys Acta Biomembr; 2019 Sep; 1861(9):1523-1532. PubMed ID: 31295476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging lipid membrane domains with lipid-specific probes.
    Hullin-Matsuda F; Ishitsuka R; Takahashi M; Kobayashi T
    Methods Mol Biol; 2009; 580():203-20. PubMed ID: 19784601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miscibility phase diagrams of giant vesicles containing sphingomyelin.
    Veatch SL; Keller SL
    Phys Rev Lett; 2005 Apr; 94(14):148101. PubMed ID: 15904115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlated AFM and NanoSIMS imaging to probe cholesterol-induced changes in phase behavior and non-ideal mixing in ternary lipid membranes.
    Anderton CR; Lou K; Weber PK; Hutcheon ID; Kraft ML
    Biochim Biophys Acta; 2011 Jan; 1808(1):307-15. PubMed ID: 20883665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic Force Microscopy Imaging and Force Spectroscopy of Supported Lipid Bilayers.
    Unsay JD; Cosentino K; García-Sáez AJ
    J Vis Exp; 2015 Jul; (101):e52867. PubMed ID: 26273958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlated fluorescence-atomic force microscopy of membrane domains: structure of fluorescence probes determines lipid localization.
    Shaw JE; Epand RF; Epand RM; Li Z; Bittman R; Yip CM
    Biophys J; 2006 Mar; 90(6):2170-8. PubMed ID: 16361347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Material properties of lipid microdomains: force-volume imaging study of the effect of cholesterol on lipid microdomain rigidity.
    An H; Nussio MR; Huson MG; Voelcker NH; Shapter JG
    Biophys J; 2010 Aug; 99(3):834-44. PubMed ID: 20682261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Syntaxin is efficiently excluded from sphingomyelin-enriched domains in supported lipid bilayers containing cholesterol.
    Saslowsky DE; Lawrence JC; Henderson RM; Edwardson JM
    J Membr Biol; 2003 Aug; 194(3):153-64. PubMed ID: 14502428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS.
    Chiantia S; Kahya N; Ries J; Schwille P
    Biophys J; 2006 Jun; 90(12):4500-8. PubMed ID: 16565041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of cyclodextrin for AFM monitoring of model raft formation.
    Giocondi MC; Milhiet PE; Dosset P; Le Grimellec C
    Biophys J; 2004 Feb; 86(2):861-9. PubMed ID: 14747321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE; Smith DA; Hooper NM
    Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes.
    Yuan C; Furlong J; Burgos P; Johnston LJ
    Biophys J; 2002 May; 82(5):2526-35. PubMed ID: 11964241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic force microscopy of lipid domains in supported model membranes.
    Burns AR
    Methods Mol Biol; 2007; 398():263-82. PubMed ID: 18214386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.