These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 29808515)

  • 21. Structural determinants of diphenethylamines for interaction with the κ opioid receptor: Synthesis, pharmacology and molecular modeling studies.
    Guerrieri E; Bermudez M; Wolber G; Berzetei-Gurske IP; Schmidhammer H; Spetea M
    Bioorg Med Chem Lett; 2016 Oct; 26(19):4769-4774. PubMed ID: 27567368
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterologous regulation of Mu-opioid (MOP) receptor mobility in the membrane of SH-SY5Y cells.
    Carayon K; Moulédous L; Combedazou A; Mazères S; Haanappel E; Salomé L; Mollereau C
    J Biol Chem; 2014 Oct; 289(41):28697-706. PubMed ID: 25183007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative modeling and molecular dynamics studies of the delta, kappa and mu opioid receptors.
    Strahs D; Weinstein H
    Protein Eng; 1997 Sep; 10(9):1019-38. PubMed ID: 9464566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. κ-Opioid receptor mediates the antinociceptive effect of nitrous oxide in mice.
    Fukagawa H; Koyama T; Fukuda K
    Br J Anaesth; 2014 Dec; 113(6):1032-8. PubMed ID: 25086587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential effect of membrane cholesterol removal on mu- and delta-opioid receptors: a parallel comparison of acute and chronic signaling to adenylyl cyclase.
    Levitt ES; Clark MJ; Jenkins PM; Martens JR; Traynor JR
    J Biol Chem; 2009 Aug; 284(33):22108-22122. PubMed ID: 19520863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pharmacogenomic study of the role of the nociceptin/orphanin FQ receptor and opioid receptors in diabetic hyperalgesia.
    Rutten K; Tzschentke TM; Koch T; Schiene K; Christoph T
    Eur J Pharmacol; 2014 Oct; 741():264-71. PubMed ID: 25169429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Endogenous opioid system in developing normal and jimpy oligodendrocytes: mu and kappa opioid receptors mediate differential mitogenic and growth responses.
    Knapp PE; Maderspach K; Hauser KF
    Glia; 1998 Feb; 22(2):189-201. PubMed ID: 9537839
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of Plasma Membrane Nanodomains of the Water Channel Aquaporin-3 Revealed by Fixed and Live Photoactivated Localization Microscopy.
    Arnspang EC; Sengupta P; Mortensen KI; Jensen HH; Hahn U; Jensen EBV; Lippincott-Schwartz J; Nejsum LN
    Nano Lett; 2019 Feb; 19(2):699-707. PubMed ID: 30584808
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95.
    Nair D; Hosy E; Petersen JD; Constals A; Giannone G; Choquet D; Sibarita JB
    J Neurosci; 2013 Aug; 33(32):13204-24. PubMed ID: 23926273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor.
    Che T; Majumdar S; Zaidi SA; Ondachi P; McCorvy JD; Wang S; Mosier PD; Uprety R; Vardy E; Krumm BE; Han GW; Lee MY; Pardon E; Steyaert J; Huang XP; Strachan RT; Tribo AR; Pasternak GW; Carroll FI; Stevens RC; Cherezov V; Katritch V; Wacker D; Roth BL
    Cell; 2018 Jan; 172(1-2):55-67.e15. PubMed ID: 29307491
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alterations in the Activity of Spinal and Thalamic Opioid Systems in a Mice Neuropathic Pain Model.
    Rojewska E; Wawrzczak-Bargiela A; Szucs E; Benyhe S; Starnowska J; Mika J; Przewlocki R; Przewlocka B
    Neuroscience; 2018 Oct; 390():293-302. PubMed ID: 30176322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Opioid-receptor (OR) signaling cascades in rat cerebral cortex and model cell lines: the role of plasma membrane structure.
    Ujčíková H; Brejchová J; Vošahlíková M; Kagan D; Dlouhá K; Sýkora J; Merta L; Drastichová Z; Novotný J; Ostašov P; Roubalová L; Parenti M; Hof M; Svoboda P
    Physiol Res; 2014; 63(Suppl 1):S165-76. PubMed ID: 24564656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Angiotensin II Treatment Induces Reorganization and Changes in the Lateral Dynamics of Angiotensin II Type 1 Receptor in the Plasma Membrane Elucidated by Photoactivated Localization Microscopy Combined with Image Spatial Correlation Analysis.
    Andersen C; Zulueta Díaz YLM; Kure JL; Hessellund Eriksen M; Lovatt AL; Lagerholm C; Morales S; Sehayek S; Sheard TMD; Wiseman PW; Arnspang EC
    Anal Chem; 2023 Jan; 95(2):730-738. PubMed ID: 36574961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mu-opioid peptide (MOP) and nociceptin/orphanin FQ peptide (NOP) receptor activation both contribute to the discriminative stimulus properties of cebranopadol in the rat.
    Tzschentke TM; Rutten K
    Neuropharmacology; 2018 Feb; 129():100-108. PubMed ID: 29155273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Opioid Receptors in Immune and Glial Cells-Implications for Pain Control.
    Machelska H; Celik MÖ
    Front Immunol; 2020; 11():300. PubMed ID: 32194554
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discovery of the first small-molecule opioid pan antagonist with nanomolar affinity at mu, delta, kappa, and nociceptin opioid receptors.
    Zaveri NT; Journigan VB; Polgar WE
    ACS Chem Neurosci; 2015 Apr; 6(4):646-57. PubMed ID: 25635572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organization of gangliosides into membrane nanodomains.
    Sarmento MJ; Ricardo JC; Amaro M; Šachl R
    FEBS Lett; 2020 Nov; 594(22):3668-3697. PubMed ID: 32592178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective kappa opioid antagonists for treatment of addiction, are we there yet?
    Helal MA; Habib ES; Chittiboyina AG
    Eur J Med Chem; 2017 Dec; 141():632-647. PubMed ID: 29107424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of the amino acid residues in the sixth transmembrane domains accessible in the binding-site crevices of mu, delta, and kappa opioid receptors.
    Xu W; Li J; Chen C; Huang P; Weinstein H; Javitch JA; Shi L; de Riel JK; Liu-Chen LY
    Biochemistry; 2001 Jul; 40(27):8018-29. PubMed ID: 11434771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cholesterol effects on nicotinic acetylcholine receptor: cellular aspects.
    Barrantes FJ
    Subcell Biochem; 2010; 51():467-87. PubMed ID: 20213555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.