These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 29808585)

  • 41. Lymphocyte subsets in dialyser eluates: a new parameter of bioincompatibility?
    Grooteman MP; Nube MJ; van Limbeek J; Schoorl M; van Houte AJ
    Nephrol Dial Transplant; 1996 Jun; 11(6):1073-8. PubMed ID: 8671971
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Thermal energy balance during hemodialysis: the role of the filter membrane].
    Panzetta G; Bianco F; Galli G; Ianche M; Savoldi S; Vianello S; Vidi E; Cicinato P
    G Ital Nefrol; 2002; 19(4):425-31. PubMed ID: 12369045
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of vitamin E-bonded membrane on the 8-hydroxy 2'-deoxyguanosine level in leukocyte DNA of hemodialysis patients.
    Tarng DC; Huang TP; Liu TY; Chen HW; Sung YJ; Wei YH
    Kidney Int; 2000 Aug; 58(2):790-9. PubMed ID: 10916104
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plasma protein adsorption to highly permeable hemodialysis membranes.
    Clark WR; Macias WL; Molitoris BA; Wang NH
    Kidney Int; 1995 Aug; 48(2):481-8. PubMed ID: 7564116
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [C-reactive protein (CRP) as a marker of of hemodialysis biocompatibility].
    Szepietowski T; Krajewska M
    Polim Med; 1997; 27(1-2):47-59. PubMed ID: 9380601
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Proteomics Investigations into Serum Proteins Adsorbed by High-Flux and Low-Flux Dialysis Membranes.
    Han S; Yang K; Sun J; Liu J; Zhang L; Zhao J
    Proteomics Clin Appl; 2017 Dec; 11(11-12):. PubMed ID: 28795537
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plasma protein adsorption to hemodialysis membranes: studies in an in vitro model.
    Parzer S; Balcke P; Mannhalter C
    J Biomed Mater Res; 1993 Apr; 27(4):455-63. PubMed ID: 8463348
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proteomics and Protein Adsorption on Hemodialysis Membranes.
    Bonomini M
    Proteomics Clin Appl; 2017 Dec; 11(11-12):. PubMed ID: 29064629
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [The effect of repeated use of cuprophane and polysulfone dialyzers during hemodialysis on the count of natural killer cells in blood].
    Liszka M; Moczulski D; Zukowska-Szczechowska E; Grzeszczak W; Religa Z
    Pol Arch Med Wewn; 1997 Mar; 97(3):224-31. PubMed ID: 9333768
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oxidation of proteins adsorbed on hemodialysis membranes and model materials.
    Caillou S; Boonaert CJ; Dewez JL; Rouxhet PG
    J Biomed Mater Res B Appl Biomater; 2008 Jan; 84(1):240-8. PubMed ID: 17514669
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biocompatibility of haemodialysis membranes: haemodialysis-related leukotriene B4 and C4 generation. France.
    Hornych A; Rémy P; Luong N; Aumont J; Bariéty J
    Nephron; 1996; 74(1):11-8. PubMed ID: 8883014
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extraction of serum proteins adsorbed on the surface of dialysis membranes.
    Ozasa H; Ota K
    Artif Organs; 1994 Oct; 18(10):768-70. PubMed ID: 7832659
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of biofouling mechanisms between cellulose triacetate (CTA) and thin-film composite (TFC) polyamide forward osmosis membranes in osmotic membrane bioreactors.
    Wang X; Zhao Y; Yuan B; Wang Z; Li X; Ren Y
    Bioresour Technol; 2016 Feb; 202():50-8. PubMed ID: 26700758
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative study on reused haemodialysis membranes.
    Sótonyi P; Jàray J; Pàdàr Z; Woller J; Füredi S; Gàl T
    Int J Artif Organs; 1996 Jul; 19(7):387-92. PubMed ID: 8841852
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Platelet-neutrophil interactions during hemodialysis: a proposed biocompatibility approach.
    Stuard S; Bonomini M; Settefrati N; Albertazzi A
    Int J Artif Organs; 1998 Feb; 21(2):75-82. PubMed ID: 9569128
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro and in vivo biocompatibility of substituted cellulose and synthetic membranes.
    Mandolfo S; Tetta C; David S; Gervasio R; Ognibene D; Wratten ML; Tessore E; Imbasciati E
    Int J Artif Organs; 1997 Nov; 20(11):603-9. PubMed ID: 9464869
    [TBL] [Abstract][Full Text] [Related]  

  • 57. β-trace protein is highly removed during haemodialysis with high-flux and super high-flux membranes.
    Donadio C; Tognotti D; Caponi L; Paolicchi A
    BMC Nephrol; 2017 Feb; 18(1):68. PubMed ID: 28219328
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Leukocyte, platelet and endothelial activation in patients with acute renal failure treated by intermittent hemodialysis.
    de Sá HM; Freitas LA; Alves VC; Garção MF; Rosa MA; Marques AA
    Am J Nephrol; 2001; 21(4):264-73. PubMed ID: 11509797
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Influence of cuprophane membrane surface dialyzers on beta2-microglobulin serum concentration in patients during hemodialysis].
    Szepietowski T; el-Hayek A
    Polim Med; 1993; 23(3-4):43-54. PubMed ID: 8029157
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preparation and Characterization of Cellulose Triacetate as Support for Lecitase Ultra Immobilization.
    Silva FBD; Morais Júnior WG; Silva CVD; Vieira AT; Batista ACF; Faria AM; Assunção RMN
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29144385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.