These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29808835)

  • 1. DFT calculation of oxygen adsorption on platinum nanoparticles: coverage and size effects.
    Verga LG; Aarons J; Sarwar M; Thompsett D; Russell AE; Skylaris CK
    Faraday Discuss; 2018 Sep; 208(0):497-522. PubMed ID: 29808835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol, O, and CO adsorption on Pt nanoparticles: effects of nanoparticle size and graphene support.
    G Verga L; Russell AE; Skylaris CK
    Phys Chem Chem Phys; 2018 Oct; 20(40):25918-25930. PubMed ID: 30289424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of graphene support on large Pt nanoparticles.
    Verga LG; Aarons J; Sarwar M; Thompsett D; Russell AE; Skylaris CK
    Phys Chem Chem Phys; 2016 Dec; 18(48):32713-32722. PubMed ID: 27878153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density Functional Theory and Machine Learning Description and Prediction of Oxygen Atom Chemisorption on Platinum Surfaces and Nanoparticles.
    Rivera Rocabado DS; Nanba Y; Koyama M
    ACS Omega; 2021 Jul; 6(27):17424-17432. PubMed ID: 34278128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters.
    Allian AD; Takanabe K; Fujdala KL; Hao X; Truex TJ; Cai J; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Mar; 133(12):4498-517. PubMed ID: 21366255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast prediction of adsorption properties for platinum nanocatalysts with generalized coordination numbers.
    Calle-Vallejo F; Martínez JI; García-Lastra JM; Sautet P; Loffreda D
    Angew Chem Int Ed Engl; 2014 Aug; 53(32):8316-9. PubMed ID: 24919964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption and decomposition of cyclohexanone (C6H10O) on Pt(111) and the (2 × 2) and (√3 × √3)r30°-Sn/Pt(111) surface alloys.
    Kim J; Welch LA; Olivas A; Podkolzin SG; Koel BE
    Langmuir; 2010 Nov; 26(21):16401-11. PubMed ID: 20973583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First principles study of oxygen adsorption on Se-modified Ru nanoparticles.
    Zuluaga S; Stolbov S
    J Phys Condens Matter; 2012 Aug; 24(34):345303. PubMed ID: 22871976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-Principles Calculation of Pt Surface Energies in an Electrochemical Environment: Thermodynamic Driving Forces for Surface Faceting and Nanoparticle Reconstruction.
    McCrum IT; Hickner MA; Janik MJ
    Langmuir; 2017 Jul; 33(28):7043-7052. PubMed ID: 28640641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption and dissociation of H2O2 on Pt and Pt-alloy clusters and surfaces.
    Balbuena PB; Calvo SR; Lamas EJ; Salazar PF; Seminario JM
    J Phys Chem B; 2006 Sep; 110(35):17452-9. PubMed ID: 16942084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of naphthalene and quinoline on Pt, Pd and Rh: a DFT study.
    Santarossa G; Iannuzzi M; Vargas A; Baiker A
    Chemphyschem; 2008 Feb; 9(3):401-13. PubMed ID: 18236490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of O and CO binding on Pt nanoparticles due to electronic and structural effects of titania supports.
    Ellaby T; Briquet L; Sarwar M; Thompsett D; Skylaris CK
    J Chem Phys; 2019 Sep; 151(11):114702. PubMed ID: 31542047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative and Atomic-Scale View of CO-Induced Pt Nanoparticle Surface Reconstruction at Saturation Coverage via DFT Calculations Coupled with in Situ TEM and IR.
    Avanesian T; Dai S; Kale MJ; Graham GW; Pan X; Christopher P
    J Am Chem Soc; 2017 Mar; 139(12):4551-4558. PubMed ID: 28263592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pt nanoparticles under oxidizing conditions - implications of particle size, adsorption sites and oxygen coverage on stability.
    Yohannes AG; Fink K; Kondov I
    Nanoscale Adv; 2022 Oct; 4(21):4554-4569. PubMed ID: 36341292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys.
    Xu Y; Ruban AV; Mavrikakis M
    J Am Chem Soc; 2004 Apr; 126(14):4717-25. PubMed ID: 15070391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal effects on electronic properties of CO/Pt(111) in water.
    Duan S; Xu X; Luo Y; Hermansson K; Tian ZQ
    Phys Chem Chem Phys; 2013 Aug; 15(32):13619-27. PubMed ID: 23835901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of enhanced stability and oxygen adsorption capacity of medium-sized Pt-Ni nanoclusters.
    Yang Y; Yu H; Cai Y; Ferrando R; Cheng D
    J Phys Condens Matter; 2018 Jul; 30(28):285503. PubMed ID: 29863492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.