BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29808984)

  • 1. Flexible Strain Sensors Fabricated by Meniscus-Guided Printing of Carbon Nanotube-Polymer Composites.
    Wajahat M; Lee S; Kim JH; Chang WS; Pyo J; Cho SH; Seol SK
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19999-20005. PubMed ID: 29808984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Stretchable and Wearable Strain Sensor Based on Printable Carbon Nanotube Layers/Polydimethylsiloxane Composites with Adjustable Sensitivity.
    Wang X; Li J; Song H; Huang H; Gou J
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7371-7380. PubMed ID: 29432684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Printing of Highly Conductive Carbon Nanotube Microarchitectures with Fluid Ink.
    Kim JH; Lee S; Wajahat M; Jeong H; Chang WS; Jeong HJ; Yang JR; Kim JT; Seol SK
    ACS Nano; 2016 Sep; 10(9):8879-87. PubMed ID: 27564233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion.
    Ryu S; Lee P; Chou JB; Xu R; Zhao R; Hart AJ; Kim SG
    ACS Nano; 2015 Jun; 9(6):5929-36. PubMed ID: 26038807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully printed, highly sensitive multifunctional artificial electronic whisker arrays integrated with strain and temperature sensors.
    Harada S; Honda W; Arie T; Akita S; Takei K
    ACS Nano; 2014 Apr; 8(4):3921-7. PubMed ID: 24580035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly conductive carbon-based aqueous inks toward electroluminescent devices, printed capacitive sensors and flexible wearable electronics.
    Liao Y; Zhang R; Wang H; Ye S; Zhou Y; Ma T; Zhu J; Pfefferle LD; Qian J
    RSC Adv; 2019 May; 9(27):15184-15189. PubMed ID: 35514818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Patterning of Carbon Nanotube via Stamp Contact Printing Process for Stretchable and Sensitive Sensing Devices.
    Liang B; Zhang Z; Chen W; Lu D; Yang L; Yang R; Zhu H; Tang Z; Gui X
    Nanomicro Lett; 2019 Oct; 11(1):92. PubMed ID: 34138033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printable composite dough for stretchable, ultrasensitive and body-patchable strain sensors.
    Kim JY; Ji S; Jung S; Ryu BH; Kim HS; Lee SS; Choi Y; Jeong S
    Nanoscale; 2017 Aug; 9(31):11035-11046. PubMed ID: 28580999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid strategy of graphene/carbon nanotube hierarchical networks for highly sensitive, flexible wearable strain sensors.
    Li Y; Ai Q; Mao L; Guo J; Gong T; Lin Y; Wu G; Huang W; Zhang X
    Sci Rep; 2021 Oct; 11(1):21006. PubMed ID: 34697336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Printed, Soft, Nanostructured Strain Sensors for Monitoring of Structural Health and Human Physiology.
    Herbert R; Lim HR; Yeo WH
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25020-25030. PubMed ID: 32393022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible heartbeat sensor for wearable device.
    Kwak YH; Kim W; Park KB; Kim K; Seo S
    Biosens Bioelectron; 2017 Aug; 94():250-255. PubMed ID: 28285203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoalloy Printed and Pulse-Laser Sintered Flexible Sensor Devices with Enhanced Stability and Materials Compatibility.
    Zhao W; Rovere T; Weerawarne D; Osterhoudt G; Kang N; Joseph P; Luo J; Shim B; Poliks M; Zhong CJ
    ACS Nano; 2015 Jun; 9(6):6168-77. PubMed ID: 26034999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection.
    Cai L; Song L; Luan P; Zhang Q; Zhang N; Gao Q; Zhao D; Zhang X; Tu M; Yang F; Zhou W; Fan Q; Luo J; Zhou W; Ajayan PM; Xie S
    Sci Rep; 2013 Oct; 3():3048. PubMed ID: 24157842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Stretchable Fully-Printed CNT-Based Electrochemical Sensors and Biofuel Cells: Combining Intrinsic and Design-Induced Stretchability.
    Bandodkar AJ; Jeerapan I; You JM; Nuñez-Flores R; Wang J
    Nano Lett; 2016 Jan; 16(1):721-7. PubMed ID: 26694819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Exfoliated MWNT-rGO Ink-Wrapped Polyurethane Foam for Piezoresistive Pressure Sensor Applications.
    Tewari A; Gandla S; Bohm S; McNeill CR; Gupta D
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5185-5195. PubMed ID: 29363302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Electrically Conductive Porous PDMS/Carbon Nanofiber Composites for Deformable Strain Sensors and Conductors.
    Wu S; Zhang J; Ladani RB; Ravindran AR; Mouritz AP; Kinloch AJ; Wang CH
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14207-14215. PubMed ID: 28398032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Waterproof Electronic-Bandage with Tunable Sensitivity for Wearable Strain Sensors.
    Jeon JY; Ha TJ
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2866-71. PubMed ID: 26751851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocurable Polymer-Based 3D Printing: Advanced Flexible Strain Sensors for Human Kinematics Monitoring.
    Billings C; Siddique R; Liu Y
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional printing of freeform helical microstructures: a review.
    Farahani RD; Chizari K; Therriault D
    Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible and printable paper-based strain sensors for wearable and large-area green electronics.
    Liao X; Zhang Z; Liao Q; Liang Q; Ou Y; Xu M; Li M; Zhang G; Zhang Y
    Nanoscale; 2016 Jul; 8(26):13025-32. PubMed ID: 27314505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.