These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 29809100)

  • 1. Concurrent Validity of a Portable Force Plate Using Vertical Jump Force-Time Characteristics.
    Lake J; Mundy P; Comfort P; McMahon JJ; Suchomel TJ; Carden P
    J Appl Biomech; 2018 Oct; 34(5):410-413. PubMed ID: 29809100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validity of the Hawkin Dynamics Wireless Dual Force Platform System Against a Piezoelectric Laboratory Grade System for Vertical Countermovement Jump Variables.
    Dos'Santos T; Evans DT; Read DB
    J Strength Cond Res; 2024 Jun; 38(6):1144-1148. PubMed ID: 38781471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The validation of a portable force plate for measuring force-time data during jumping and landing tasks.
    Walsh MS; Ford KR; Bangen KJ; Myer GD; Hewett TE
    J Strength Cond Res; 2006 Nov; 20(4):730-4. PubMed ID: 17194240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do the peak and mean force methods of assessing vertical jump force asymmetry agree?
    Lake JP; Mundy PD; Comfort P; Suchomel TJ
    Sports Biomech; 2020 Apr; 19(2):227-234. PubMed ID: 29782223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time.
    Barker LA; Harry JR; Mercer JA
    J Strength Cond Res; 2018 Jan; 32(1):248-254. PubMed ID: 28746248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height.
    Glatthorn JF; Gouge S; Nussbaumer S; Stauffacher S; Impellizzeri FM; Maffiuletti NA
    J Strength Cond Res; 2011 Feb; 25(2):556-60. PubMed ID: 20647944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Countermovement Jump Force-Time Curve Analyses: Reliability and Comparability Across Force Plate Systems.
    Merrigan JJ; Strang A; Eckerle J; Mackowski N; Hierholzer K; Ray NT; Smith R; Hagen JA; Briggs RA
    J Strength Cond Res; 2024 Jan; 38(1):30-37. PubMed ID: 37815253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bilateral comparison of propulsion mechanics during single-leg vertical jumping.
    McElveen MT; Riemann BL; Davies GJ
    J Strength Cond Res; 2010 Feb; 24(2):375-81. PubMed ID: 20072063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimisation of applied loads when using the two-point method for assessing the force-velocity relationship during vertical jumps.
    García-Ramos A; Pérez-Castilla A; Jaric S
    Sports Biomech; 2021 Apr; 20(3):274-289. PubMed ID: 30540216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Validity of Hawkin Dynamics Wireless Dual Force Plates for Measuring Countermovement Jump and Drop Jump Variables.
    Badby AJ; Mundy PD; Comfort P; Lake JP; McMahon JJ
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement Agreement Between Samozino's Method and Force Plate Force-Velocity Profiles During Barbell and Hexbar Countermovement Jumps.
    Hicks DS; Drummond C; Williams KJ
    J Strength Cond Res; 2022 Dec; 36(12):3290-3300. PubMed ID: 34657074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of barbell load on countermovement vertical jump power and net impulse.
    Mundy PD; Smith NA; Lauder MA; Lake JP
    J Sports Sci; 2017 Sep; 35(18):1-7. PubMed ID: 28282758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative net vertical impulse determines jumping performance.
    Kirby TJ; McBride JM; Haines TL; Dayne AM
    J Appl Biomech; 2011 Aug; 27(3):207-14. PubMed ID: 21844609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validity of vertical jump measurement devices.
    Buckthorpe M; Morris J; Folland JP
    J Sports Sci; 2012; 30(1):63-9. PubMed ID: 22111944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a criterion method to determine peak mechanical power output in a countermovement jump.
    Owen NJ; Watkins J; Kilduff LP; Bevan HR; Bennett MA
    J Strength Cond Res; 2014 Jun; 28(6):1552-8. PubMed ID: 24276298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Countermovement jump height: gender and sport-specific differences in the force-time variables.
    Laffaye G; Wagner PP; Tombleson TI
    J Strength Cond Res; 2014 Apr; 28(4):1096-105. PubMed ID: 23838969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the Reactive Strength Index Modified on Force- and Power-Time Curves.
    McMahon JJ; Jones PA; Suchomel TJ; Lake J; Comfort P
    Int J Sports Physiol Perform; 2018 Feb; 13(2):220-227. PubMed ID: 28605214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and Electromyographic Subphase Characteristics With Relation to Countermovement Vertical Jump Performance.
    Harry JR; Paquette MR; Schilling BK; Barker LA; James CR; Dufek JS
    J Appl Biomech; 2018 Aug; 34(4):291-297. PubMed ID: 29485344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive Strength Index Modified Is a Valid Measure of Explosiveness in Collegiate Female Volleyball Players.
    Kipp K; Kiely MT; Geiser CF
    J Strength Cond Res; 2016 May; 30(5):1341-7. PubMed ID: 26439787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ground reaction force differences in the countermovement jump in girls with different levels of performance.
    Floría P; Harrison AJ
    Res Q Exerc Sport; 2013 Sep; 84(3):329-35. PubMed ID: 24261012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.