These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29809144)

  • 61. Visuomotor adaptation does not recalibrate kinesthetic sense of felt hand path.
    Wong T; Henriques DY
    J Neurophysiol; 2009 Feb; 101(2):614-23. PubMed ID: 19019980
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Adaptation to visual feedback delay in a redundant motor task.
    Farshchiansadegh A; Ranganathan R; Casadio M; Mussa-Ivaldi FA
    J Neurophysiol; 2015 Jan; 113(2):426-33. PubMed ID: 25339704
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Superposition of independent units of coordination during pointing movements involving the trunk with and without visual feedback.
    Pigeon P; Yahia LH; Mitnitski AB; Feldman AG
    Exp Brain Res; 2000 Apr; 131(3):336-49. PubMed ID: 10789948
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Using proprioception to control ongoing actions: dominance of vision or altered proprioceptive weighing?
    Goodman R; Tremblay L
    Exp Brain Res; 2018 Jul; 236(7):1897-1910. PubMed ID: 29696313
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Target modality affects visually guided online control of reaching.
    Cameron BD; López-Moliner J
    Vision Res; 2015 May; 110(Pt B):233-43. PubMed ID: 24997229
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Sensory prediction errors drive cerebellum-dependent adaptation of reaching.
    Tseng YW; Diedrichsen J; Krakauer JW; Shadmehr R; Bastian AJ
    J Neurophysiol; 2007 Jul; 98(1):54-62. PubMed ID: 17507504
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Intra- and intermodal integration of discrepant visual and proprioceptive action effects.
    Ladwig S; Sutter C; Müsseler J
    Exp Brain Res; 2013 Dec; 231(4):457-68. PubMed ID: 24101198
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The cerebellum is not necessary for visually driven recalibration of hand proprioception.
    Henriques DY; Filippopulos F; Straube A; Eggert T
    Neuropsychologia; 2014 Nov; 64():195-204. PubMed ID: 25278133
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Riemannian geometric approach to human arm dynamics, movement optimization, and invariance.
    Biess A; Flash T; Liebermann DG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031927. PubMed ID: 21517543
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Properties of intermodal transfer after dual visuo- and auditory-motor adaptation.
    Schmitz G; Bock OL
    Hum Mov Sci; 2017 Oct; 55():108-120. PubMed ID: 28810171
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Rhythmic movements are larger and faster but with the same frequency on removal of visual feedback.
    Levy-Tzedek S; Ben Tov M; Karniel A
    J Neurophysiol; 2011 Nov; 106(5):2120-6. PubMed ID: 21813746
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Visual feedback of the moving arm allows complete adaptation of pointing movements to centrifugal and Coriolis forces in human subjects.
    Bourdin C; Gauthier G; Blouin J; Vercher JL
    Neurosci Lett; 2001 Mar; 301(1):25-8. PubMed ID: 11239708
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Learned rather than online relative weighting of visual-proprioceptive sensory cues.
    Mikula L; Gaveau V; Pisella L; Khan AZ; Blohm G
    J Neurophysiol; 2018 May; 119(5):1981-1992. PubMed ID: 29465322
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Inertial constraints on limb proprioception are independent of visual calibration.
    Riley MA; Turvey MT
    J Exp Psychol Hum Percept Perform; 2001 Apr; 27(2):438-55. PubMed ID: 11318058
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Crossmodal interference in bimanual movements: effects of abrupt visuo-motor perturbation of one hand on the other.
    Kagerer FA
    Exp Brain Res; 2015 Mar; 233(3):839-49. PubMed ID: 25479738
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The role of proprioception and attention in a visuomotor adaptation task.
    Ingram HA; van Donkelaar P; Cole J; Vercher JL; Gauthier GM; Miall RC
    Exp Brain Res; 2000 May; 132(1):114-26. PubMed ID: 10836641
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Visual feedback is not important for bimanual human interval timing.
    Studenka BE; Cummins DL; Myers K
    Psychol Res; 2021 Mar; 85(2):857-864. PubMed ID: 31982935
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Developmental changes in the visual-proprioceptive integration threshold of children.
    Jaime M; Longard J; Moore C
    J Exp Child Psychol; 2014 Sep; 125():1-12. PubMed ID: 24814203
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Optimal compensation for temporal uncertainty in movement planning.
    Hudson TE; Maloney LT; Landy MS
    PLoS Comput Biol; 2008 Jul; 4(7):e1000130. PubMed ID: 18654619
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Saccade adaptation in response to altered arm dynamics.
    Nanayakkara T; Shadmehr R
    J Neurophysiol; 2003 Dec; 90(6):4016-21. PubMed ID: 14665687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.