BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29809215)

  • 1. Development of glycosynthases with broad glycan specificity for the efficient glyco-remodeling of antibodies.
    Shivatare SS; Huang LY; Zeng YF; Liao JY; You TH; Wang SY; Cheng T; Chiu CW; Chao P; Chen LT; Tsai TI; Huang CC; Wu CY; Lin NH; Wong CH
    Chem Commun (Camb); 2018 Jun; 54(48):6161-6164. PubMed ID: 29809215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation and Comparative Kinetic Analysis of New Glycosynthase Mutants from Streptococcus pyogenes Endoglycosidases for Antibody Glycoengineering.
    Tong X; Li T; Li C; Wang LX
    Biochemistry; 2018 Sep; 57(35):5239-5246. PubMed ID: 30102520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycosynthase Mutants of Endoglycosidase S2 Show Potent Transglycosylation Activity and Remarkably Relaxed Substrate Specificity for Antibody Glycosylation Remodeling.
    Li T; Tong X; Yang Q; Giddens JP; Wang LX
    J Biol Chem; 2016 Aug; 291(32):16508-18. PubMed ID: 27288408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pot enzymatic glycan remodeling of a therapeutic monoclonal antibody by endoglycosidase S (Endo-S) from Streptococcus pyogenes.
    Tong X; Li T; Orwenyo J; Toonstra C; Wang LX
    Bioorg Med Chem; 2018 Apr; 26(7):1347-1355. PubMed ID: 28789910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions.
    Huang W; Giddens J; Fan SQ; Toonstra C; Wang LX
    J Am Chem Soc; 2012 Jul; 134(29):12308-18. PubMed ID: 22747414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oligosaccharide synthesis by glycosynthases.
    Perugino G; Trincone A; Rossi M; Moracci M
    Trends Biotechnol; 2004 Jan; 22(1):31-7. PubMed ID: 14690620
    [No Abstract]   [Full Text] [Related]  

  • 7. Structural insights into the mechanisms and specificities of IgG-active endoglycosidases.
    Du JJ; Klontz EH; Guerin ME; Trastoy B; Sundberg EJ
    Glycobiology; 2020 Mar; 30(4):268-279. PubMed ID: 31172182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EndoS from Streptococcus pyogenes is hydrolyzed by the cysteine proteinase SpeB and requires glutamic acid 235 and tryptophans for IgG glycan-hydrolyzing activity.
    Allhorn M; Olsén A; Collin M
    BMC Microbiol; 2008 Jan; 8():3. PubMed ID: 18182097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preface.
    Imperiali B
    Methods Enzymol; 2018; 598():xv-xix. PubMed ID: 29306445
    [No Abstract]   [Full Text] [Related]  

  • 10. Generation of a Mutant Mucor hiemalis Endoglycosidase That Acts on Core-fucosylated N-Glycans.
    Katoh T; Katayama T; Tomabechi Y; Nishikawa Y; Kumada J; Matsuzaki Y; Yamamoto K
    J Biol Chem; 2016 Oct; 291(44):23305-23317. PubMed ID: 27629418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of glycosidases and glycosyltransferases.
    Hancock SM; Vaughan MD; Withers SG
    Curr Opin Chem Biol; 2006 Oct; 10(5):509-19. PubMed ID: 16905354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Teaching old enzymes new tricks: engineering and evolution of glycosidases and glycosyl transferases for improved glycoside synthesis.
    Shaikh FA; Withers SG
    Biochem Cell Biol; 2008 Apr; 86(2):169-77. PubMed ID: 18443630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of efficient mutants of endoglycosidase from Streptococcus pyogenes and their application in a novel one-pot transglycosylation reaction for antibody modification.
    Iwamoto M; Sekiguchi Y; Nakamura K; Kawaguchi Y; Honda T; Hasegawa J
    PLoS One; 2018; 13(2):e0193534. PubMed ID: 29474426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-specific immobilization of endoglycosidases for streamlined chemoenzymatic glycan remodeling of antibodies.
    Li T; Li C; Quan DN; Bentley WE; Wang LX
    Carbohydr Res; 2018 Mar; 458-459():77-84. PubMed ID: 29475193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate Preference and Interplay of Fucosyltransferase 8 and N-Acetylglucosaminyltransferases.
    Tseng TH; Lin TW; Chen CY; Chen CH; Lin JL; Hsu TL; Wong CH
    J Am Chem Soc; 2017 Jul; 139(28):9431-9434. PubMed ID: 28678517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplexed engineering glycosyltransferase genes in CHO cells via targeted integration for producing antibodies with diverse complex-type N-glycans.
    Nguyen NTB; Lin J; Tay SJ; Mariati ; Yeo J; Nguyen-Khuong T; Yang Y
    Sci Rep; 2021 Jun; 11(1):12969. PubMed ID: 34155258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endo-F3 Glycosynthase Mutants Enable Chemoenzymatic Synthesis of Core-fucosylated Triantennary Complex Type Glycopeptides and Glycoproteins.
    Giddens JP; Lomino JV; Amin MN; Wang LX
    J Biol Chem; 2016 Apr; 291(17):9356-70. PubMed ID: 26966183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Re-engineering specificity in 1,3-1, 4-β-glucanase to accept branched xyloglucan substrates.
    Addington T; Calisto B; Alfonso-Prieto M; Rovira C; Fita I; Planas A
    Proteins; 2011 Feb; 79(2):365-75. PubMed ID: 21069723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemoenzymatic Methods for the Synthesis of Glycoproteins.
    Li C; Wang LX
    Chem Rev; 2018 Sep; 118(17):8359-8413. PubMed ID: 30141327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational framework for the automated construction of glycosylation reaction networks.
    Liu G; Neelamegham S
    PLoS One; 2014; 9(6):e100939. PubMed ID: 24978019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.