These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 29812930)

  • 1. Atomic Energies from a Convolutional Neural Network.
    Chen X; Jørgensen MS; Li J; Hammer B
    J Chem Theory Comput; 2018 Jul; 14(7):3933-3942. PubMed ID: 29812930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BAND NN: A Deep Learning Framework for Energy Prediction and Geometry Optimization of Organic Small Molecules.
    Laghuvarapu S; Pathak Y; Priyakumar UD
    J Comput Chem; 2020 Mar; 41(8):790-799. PubMed ID: 31845368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The accuracy of ab initio calculations without ab initio calculations for charged systems: Kriging predictions of atomistic properties for ions in aqueous solutions.
    Di Pasquale N; Davie SJ; Popelier PLA
    J Chem Phys; 2018 Jun; 148(24):241724. PubMed ID: 29960379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convolutional Neural Network of Atomic Surface Structures To Predict Binding Energies for High-Throughput Screening of Catalysts.
    Back S; Yoon J; Tian N; Zhong W; Tran K; Ulissi ZW
    J Phys Chem Lett; 2019 Aug; 10(15):4401-4408. PubMed ID: 31310543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular tailoring approach: a route for ab initio treatment of large clusters.
    Sahu N; Gadre SR
    Acc Chem Res; 2014 Sep; 47(9):2739-47. PubMed ID: 24798296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast and Accurate Artificial Neural Network Potential Model for MAPbI
    Chen HA; Pao CW
    ACS Omega; 2019 Jun; 4(6):10950-10959. PubMed ID: 31460193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration.
    Kang PL; Shang C; Liu ZP
    Acc Chem Res; 2020 Oct; 53(10):2119-2129. PubMed ID: 32940999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials.
    Zaverkin V; Kästner J
    J Chem Theory Comput; 2020 Aug; 16(8):5410-5421. PubMed ID: 32672968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning molecular energies using localized graph kernels.
    Ferré G; Haut T; Barros K
    J Chem Phys; 2017 Mar; 146(11):114107. PubMed ID: 28330348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neural network protocol for electronic excitations of
    Ye S; Hu W; Li X; Zhang J; Zhong K; Zhang G; Luo Y; Mukamel S; Jiang J
    Proc Natl Acad Sci U S A; 2019 Jun; 116(24):11612-11617. PubMed ID: 31147467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning enhanced global optimization by clustering local environments to enable bundled atomic energies.
    Meldgaard SA; Kolsbjerg EL; Hammer B
    J Chem Phys; 2018 Oct; 149(13):134104. PubMed ID: 30292199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reactive, scalable, and transferable model for molecular energies from a neural network approach based on local information.
    Unke OT; Meuwly M
    J Chem Phys; 2018 Jun; 148(24):241708. PubMed ID: 29960298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of descriptor choice in machine learning models for ionic liquid melting point prediction.
    Low K; Kobayashi R; Izgorodina EI
    J Chem Phys; 2020 Sep; 153(10):104101. PubMed ID: 32933305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning of dynamically responsive chemical Hamiltonians with semiempirical quantum mechanics.
    Zhou G; Lubbers N; Barros K; Tretiak S; Nebgen B
    Proc Natl Acad Sci U S A; 2022 Jul; 119(27):e2120333119. PubMed ID: 35776544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learnt bond order potential to model metal-organic (Co-C) heterostructures.
    Narayanan B; Chan H; Kinaci A; Sen FG; Gray SK; Chan MKY; Sankaranarayanan SKRS
    Nanoscale; 2017 Nov; 9(46):18229-18239. PubMed ID: 29043353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning Prediction of Nine Molecular Properties Based on the SMILES Representation of the QM9 Quantum-Chemistry Dataset.
    Pinheiro GA; Mucelini J; Soares MD; Prati RC; Da Silva JLF; Quiles MG
    J Phys Chem A; 2020 Nov; 124(47):9854-9866. PubMed ID: 33174750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum machine learning using atom-in-molecule-based fragments selected on the fly.
    Huang B; von Lilienfeld OA
    Nat Chem; 2020 Oct; 12(10):945-951. PubMed ID: 32929248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voxelized Atomic Structure Potentials: Predicting Atomic Forces with the Accuracy of Quantum Mechanics Using Convolutional Neural Networks.
    Barry MC; Wise KE; Kalidindi SR; Kumar S
    J Phys Chem Lett; 2020 Nov; 11(21):9093-9099. PubMed ID: 32985196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures and relative stabilities of ammonia clusters at different temperatures: DFT vs. ab initio.
    Malloum A; Fifen JJ; Dhaouadi Z; Engo SG; Jaidane NE
    Phys Chem Chem Phys; 2015 Nov; 17(43):29226-42. PubMed ID: 26465346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.