BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 29812937)

  • 1. Rotational Dynamics of Proteins from Spin Relaxation Times and Molecular Dynamics Simulations.
    Ollila OHS; Heikkinen HA; Iwaï H
    J Phys Chem B; 2018 Jun; 122(25):6559-6569. PubMed ID: 29812937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous dynamics in partially disordered proteins.
    Virtanen SI; Kiirikki AM; Mikula KM; Iwaï H; Ollila OHS
    Phys Chem Chem Phys; 2020 Sep; 22(37):21185-21196. PubMed ID: 32929427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Observation of the Intrinsic Backbone Torsional Mobility of Disordered Proteins.
    Jain N; Narang D; Bhasne K; Dalal V; Arya S; Bhattacharya M; Mukhopadhyay S
    Biophys J; 2016 Aug; 111(4):768-774. PubMed ID: 27558720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local and Global Dynamics in Intrinsically Disordered Synuclein.
    Rezaei-Ghaleh N; Parigi G; Soranno A; Holla A; Becker S; Schuler B; Luchinat C; Zweckstetter M
    Angew Chem Int Ed Engl; 2018 Nov; 57(46):15262-15266. PubMed ID: 30184304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate Prediction of Protein NMR Spin Relaxation by Means of Polarizable Force Fields. Application to Strongly Anisotropic Rotational Diffusion.
    Marcellini M; Nguyen MH; Martin M; Hologne M; Walker O
    J Phys Chem B; 2020 Jun; 124(25):5103-5112. PubMed ID: 32501695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical Description of NMR Relaxation Highlights Correlated Dynamics in Intrinsically Disordered Proteins.
    Salvi N; Abyzov A; Blackledge M
    Angew Chem Int Ed Engl; 2017 Nov; 56(45):14020-14024. PubMed ID: 28834051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local Structure and Dynamics of Hydration Water in Intrinsically Disordered Proteins.
    Rani P; Biswas P
    J Phys Chem B; 2015 Aug; 119(34):10858-67. PubMed ID: 25871264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion of Hydration Water around Intrinsically Disordered Proteins.
    Rani P; Biswas P
    J Phys Chem B; 2015 Oct; 119(42):13262-70. PubMed ID: 26418258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general approach for prediction of motional EPR spectra from Molecular Dynamics (MD) simulations: application to spin labelled protein.
    Oganesyan VS
    Phys Chem Chem Phys; 2011 Mar; 13(10):4724-37. PubMed ID: 21279205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Narrowing the gap between experimental and computational determination of methyl group dynamics in proteins.
    Hoffmann F; Xue M; Schäfer LV; Mulder FAA
    Phys Chem Chem Phys; 2018 Oct; 20(38):24577-24590. PubMed ID: 30226234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motion of a disordered polypeptide chain as studied by paramagnetic relaxation enhancements, 15N relaxation, and molecular dynamics simulations: how fast is segmental diffusion in denatured ubiquitin?
    Xue Y; Skrynnikov NR
    J Am Chem Soc; 2011 Sep; 133(37):14614-28. PubMed ID: 21819149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rotational velocity rescaling of molecular dynamics trajectories for direct prediction of protein NMR relaxation.
    Anderson JS; LeMaster DM
    Biophys Chem; 2012 Jul; 168-169():28-39. PubMed ID: 22750561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent-dependent segmental dynamics in intrinsically disordered proteins.
    Salvi N; Abyzov A; Blackledge M
    Sci Adv; 2019 Jun; 5(6):eaax2348. PubMed ID: 31259246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overall rotational diffusion and internal mobility in domain II of protein G from Streptococcus determined from 15N relaxation data.
    Tillett ML; Blackledge MJ; Derrick JP; Lian LY; Norwood TJ
    Protein Sci; 2000 Jun; 9(6):1210-6. PubMed ID: 10892813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins.
    Schirò G; Fichou Y; Gallat FX; Wood K; Gabel F; Moulin M; Härtlein M; Heyden M; Colletier JP; Orecchini A; Paciaroni A; Wuttke J; Tobias DJ; Weik M
    Nat Commun; 2015 Mar; 6():6490. PubMed ID: 25774711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The protein hydration layer in high glucose concentration: Dynamical responses in folded and intrinsically disordered dimeric states.
    Ghosh B; Sengupta N
    Biochem Biophys Res Commun; 2021 Nov; 577():124-129. PubMed ID: 34509724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the overall and local dynamics of a protein with intermediate rotational anisotropy: Differentiating between conformational exchange and anisotropic diffusion in the B3 domain of protein G.
    Hall JB; Fushman D
    J Biomol NMR; 2003 Nov; 27(3):261-75. PubMed ID: 12975584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Dynamics Simulations of Intrinsically Disordered Proteins: Force Field Evaluation and Comparison with Experiment.
    Henriques J; Cragnell C; Skepö M
    J Chem Theory Comput; 2015 Jul; 11(7):3420-31. PubMed ID: 26575776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR probing and visualization of correlated structural fluctuations in intrinsically disordered proteins.
    Kurzbach D; Beier A; Vanas A; Flamm AG; Platzer G; Schwarz TC; Konrat R
    Phys Chem Chem Phys; 2017 Apr; 19(16):10651-10656. PubMed ID: 28397898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic resolution conformational dynamics of intrinsically disordered proteins from NMR spin relaxation.
    Salvi N; Abyzov A; Blackledge M
    Prog Nucl Magn Reson Spectrosc; 2017 Nov; 102-103():43-60. PubMed ID: 29157493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.