These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 29812943)

  • 41. Capillary force on particles near a drop edge resting on a substrate and a criterion for contact line pinning.
    Sangani AS; Lu C; Su K; Schwarz JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011603. PubMed ID: 19658711
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Particle Separation inside a Sessile Droplet with Variable Contact Angle Using Surface Acoustic Waves.
    Destgeer G; Jung JH; Park J; Ahmed H; Sung HJ
    Anal Chem; 2017 Jan; 89(1):736-744. PubMed ID: 27959499
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A phenomenological approach to the deposition pattern of evaporating droplets with contact line pinning.
    Wang H; Yan D; Qian T
    J Phys Condens Matter; 2018 Oct; 30(43):435001. PubMed ID: 30222131
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamical Clustering and Band Formation of Particles in a Marangoni Vortexing Droplet.
    Thokchom AK; Shin S
    Langmuir; 2019 Jul; 35(27):8977-8983. PubMed ID: 31188004
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Suppression of the Coffee-Ring Effect and Evaporation-Driven Disorder to Order Transition in Colloidal Droplets.
    Das S; Dey A; Reddy G; Sarma DD
    J Phys Chem Lett; 2017 Oct; 8(19):4704-4709. PubMed ID: 28885853
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Marangoni Convection in Evaporating Organic Liquid Droplets on a Nonwetting Substrate.
    Chandramohan A; Dash S; Weibel JA; Chen X; Garimella SV
    Langmuir; 2016 May; 32(19):4729-35. PubMed ID: 27119436
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fast evaporation of spreading droplets of colloidal suspensions.
    Maki KL; Kumar S
    Langmuir; 2011 Sep; 27(18):11347-63. PubMed ID: 21834573
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pinning-Depinning Mechanism of the Contact Line during Evaporation on Chemically Patterned Surfaces: A Lattice Boltzmann Study.
    Li Q; Zhou P; Yan HJ
    Langmuir; 2016 Sep; 32(37):9389-96. PubMed ID: 27579557
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Particle Segregation at Contact Lines of Evaporating Colloidal Drops: Influence of the Substrate Wettability and Particle Charge-Mass Ratio.
    Noguera-Marín D; Moraila-Martínez CL; Cabrerizo-Vílchez MA; Rodríguez-Valverde MA
    Langmuir; 2015 Jun; 31(24):6632-8. PubMed ID: 26000909
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The control of dry-out patterns using bubble-containing droplets.
    Tang J; Shan Y; Jiang Y
    J Colloid Interface Sci; 2023 Sep; 645():12-21. PubMed ID: 37130484
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In-plane particle counting at contact lines of evaporating colloidal drops: effect of the particle electric charge.
    Noguera-Marín D; Moraila-Martínez CL; Cabrerizo-Vílchez MA; Rodríguez-Valverde MA
    Soft Matter; 2015 Feb; 11(5):987-93. PubMed ID: 25520154
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Controlling particle deposit morphologies in drying nano-particle laden sessile droplets using substrate oscillations.
    Sanyal A; Basu S; Chaudhuri S
    Phys Chem Chem Phys; 2016 Jun; 18(21):14549-60. PubMed ID: 27181754
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Forces acting on a single particle in an evaporating sessile droplet on a hydrophilic surface.
    Jung JY; Kim YW; Yoo JY; Koo J; Kang YT
    Anal Chem; 2010 Feb; 82(3):784-8. PubMed ID: 20067298
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Buoyancy-induced on-the-spot mixing in droplets evaporating on nonwetting surfaces.
    Dash S; Chandramohan A; Weibel JA; Garimella SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062407. PubMed ID: 25615112
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaporating droplets on oil-wetted surfaces: Suppression of the coffee-stain effect.
    Li Y; Diddens C; Segers T; Wijshoff H; Versluis M; Lohse D
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):16756-16763. PubMed ID: 32616571
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of fluid flows on electric double layers in evaporating colloidal sessile droplets.
    Zavarzin SV; Kolesnikov AL; Budkov YA; Barash LY
    Eur Phys J E Soft Matter; 2022 Mar; 45(3):24. PubMed ID: 35288808
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural transitions in a ring stain created at the contact line of evaporating nanosuspension sessile drops.
    Askounis A; Sefiane K; Koutsos V; Shanahan ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012301. PubMed ID: 23410325
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assembly of colloidal particles by evaporation on surfaces with patterned hydrophobicity.
    Fan F; Stebe KJ
    Langmuir; 2004 Apr; 20(8):3062-7. PubMed ID: 15875830
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Joint effect of advection, diffusion, and capillary attraction on the spatial structure of particle depositions from evaporating droplets.
    Kolegov KS; Barash LY
    Phys Rev E; 2019 Sep; 100(3-1):033304. PubMed ID: 31640055
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Colloidal monolayers with cell-like tessellations via interface assisted evaporative assembly.
    Mayarani M; Basavaraj MG; Satapathy DK
    J Colloid Interface Sci; 2021 Feb; 583():683-691. PubMed ID: 33039865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.