BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29812972)

  • 1. Reduction in replication-independent endogenous DNA double-strand breaks promotes genomic instability during chronological aging in yeast.
    Thongsroy J; Patchsung M; Pongpanich M; Settayanon S; Mutirangura A
    FASEB J; 2018 May; ():fj201800218RR. PubMed ID: 29812972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathologic Replication-Independent Endogenous DNA Double-Strand Breaks Repair Defect in Chronological Aging Yeast.
    Pongpanich M; Patchsung M; Mutirangura A
    Front Genet; 2018; 9():501. PubMed ID: 30410502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replication-independent endogenous DNA double-strand breaks in Saccharomyces cerevisiae model.
    Thongsroy J; Matangkasombut O; Thongnak A; Rattanatanyong P; Jirawatnotai S; Mutirangura A
    PLoS One; 2013; 8(8):e72706. PubMed ID: 23977341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication independent DNA double-strand break retention may prevent genomic instability.
    Kongruttanachok N; Phuangphairoj C; Thongnak A; Ponyeam W; Rattanatanyong P; Pornthanakasem W; Mutirangura A
    Mol Cancer; 2010 Mar; 9():70. PubMed ID: 20356374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of replication-independent endogenous double-strand breaks in Saccharomyces cerevisiae.
    Pongpanich M; Patchsung M; Thongsroy J; Mutirangura A
    BMC Genomics; 2014 Sep; 15(1):750. PubMed ID: 25179264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LINE-1 methylation status of endogenous DNA double-strand breaks.
    Pornthanakasem W; Kongruttanachok N; Phuangphairoj C; Suyarnsestakorn C; Sanghangthum T; Oonsiri S; Ponyeam W; Thanasupawat T; Matangkasombut O; Mutirangura A
    Nucleic Acids Res; 2008 Jun; 36(11):3667-75. PubMed ID: 18474527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The roles of HMGB1-produced DNA gaps in DNA protection and aging biomarker reversal.
    Yasom S; Watcharanurak P; Bhummaphan N; Thongsroy J; Puttipanyalears C; Settayanon S; Chalertpet K; Khumsri W; Kongkaew A; Patchsung M; Siriwattanakankul C; Pongpanich M; Pin-On P; Jindatip D; Wanotayan R; Odton M; Supasai S; Oo TT; Arunsak B; Pratchayasakul W; Chattipakorn N; Chattipakorn S; Mutirangura A
    FASEB Bioadv; 2022 Jun; 4(6):408-434. PubMed ID: 35664831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer.
    Vilenchik MM; Knudson AG
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12871-6. PubMed ID: 14566050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replication-independent instability of Friedreich's ataxia GAA repeats during chronological aging.
    Neil AJ; Hisey JA; Quasem I; McGinty RJ; Hitczenko M; Khristich AN; Mirkin SM
    Proc Natl Acad Sci U S A; 2021 Feb; 118(5):. PubMed ID: 33495349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinesin Kif2C in regulation of DNA double strand break dynamics and repair.
    Zhu S; Paydar M; Wang F; Li Y; Wang L; Barrette B; Bessho T; Kwok BH; Peng A
    Elife; 2020 Jan; 9():. PubMed ID: 31951198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alkylation base damage is converted into repairable double-strand breaks and complex intermediates in G2 cells lacking AP endonuclease.
    Ma W; Westmoreland JW; Gordenin DA; Resnick MA
    PLoS Genet; 2011 Apr; 7(4):e1002059. PubMed ID: 21552545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired cohesion and homologous recombination during replicative aging in budding yeast.
    Pal S; Postnikoff SD; Chavez M; Tyler JK
    Sci Adv; 2018 Feb; 4(2):eaaq0236. PubMed ID: 29441364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zebularine induces replication-dependent double-strand breaks which are preferentially repaired by homologous recombination.
    Orta ML; Pastor N; Burgos-Morón E; Domínguez I; Calderón-Montaño JM; Huertas Castaño C; López-Lázaro M; Helleday T; Mateos S
    DNA Repair (Amst); 2017 Sep; 57():116-124. PubMed ID: 28732309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Break dosage, cell cycle stage and DNA replication influence DNA double strand break response.
    Zierhut C; Diffley JF
    EMBO J; 2008 Jul; 27(13):1875-85. PubMed ID: 18511906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How cancer cells hijack DNA double-strand break repair pathways to gain genomic instability.
    Jeggo PA; Löbrich M
    Biochem J; 2015 Oct; 471(1):1-11. PubMed ID: 26392571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleosome resection at a double-strand break during Non-Homologous Ends Joining in mammalian cells - implications from repressive chromatin organization and the role of ARTEMIS.
    Kanikarla-Marie P; Ronald S; De Benedetti A
    BMC Res Notes; 2011 Jan; 4():13. PubMed ID: 21255428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair.
    McCord RA; Michishita E; Hong T; Berber E; Boxer LD; Kusumoto R; Guan S; Shi X; Gozani O; Burlingame AL; Bohr VA; Chua KF
    Aging (Albany NY); 2009 Jan; 1(1):109-21. PubMed ID: 20157594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delayed kinetics of DNA double-strand break processing in normal and pathological aging.
    Sedelnikova OA; Horikawa I; Redon C; Nakamura A; Zimonjic DB; Popescu NC; Bonner WM
    Aging Cell; 2008 Jan; 7(1):89-100. PubMed ID: 18005250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ctf18 is required for homologous recombination-mediated double-strand break repair.
    Ogiwara H; Ohuchi T; Ui A; Tada S; Enomoto T; Seki M
    Nucleic Acids Res; 2007; 35(15):4989-5000. PubMed ID: 17636314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A persistent double-strand break destabilizes human DNA in yeast and can lead to G2 arrest and lethality.
    Bennett CB; Snipe JR; Resnick MA
    Cancer Res; 1997 May; 57(10):1970-80. PubMed ID: 9157993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.