BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 29813017)

  • 21. Development of a CRISPR/Cas9-Based Tool for Gene Deletion in
    Tran VG; Cao M; Fatma Z; Song X; Zhao H
    mSphere; 2019 Jun; 4(3):. PubMed ID: 31243078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae.
    Bao Z; Xiao H; Liang J; Zhang L; Xiong X; Sun N; Si T; Zhao H
    ACS Synth Biol; 2015 May; 4(5):585-94. PubMed ID: 25207793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The gal80 Deletion by CRISPR-Cas9 in Engineered Saccharomyces cerevisiae Produces Artemisinic Acid Without Galactose Induction.
    Ai L; Guo W; Chen W; Teng Y; Bai L
    Curr Microbiol; 2019 Nov; 76(11):1313-1319. PubMed ID: 31392501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency.
    Dang Y; Jia G; Choi J; Ma H; Anaya E; Ye C; Shankar P; Wu H
    Genome Biol; 2015 Dec; 16():280. PubMed ID: 26671237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An undergraduate laboratory module that uses the CRISPR/Cas9 system to generate frameshift mutations in yeast.
    de Waal E; Tran T; Abbondanza D; Dey A; Peterson C
    Biochem Mol Biol Educ; 2019 Sep; 47(5):573-580. PubMed ID: 31225941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Corrigendum to "Pipeline for the generation of gene knockout mice using dual sgRNA CRISPR/Cas9-mediated gene editing"[Anal. Biochem. 568 (2019) 31-40].
    Ghassemi B; Ajami M; Shamsara M; Soleimani M; Kiani J; Rassoulzadegan M
    Anal Biochem; 2019 Oct; 583():113343. PubMed ID: 31377445
    [No Abstract]   [Full Text] [Related]  

  • 27. Exploring the potential of genome editing CRISPR-Cas9 technology.
    Singh V; Braddick D; Dhar PK
    Gene; 2017 Jan; 599():1-18. PubMed ID: 27836667
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Utilization of the CRISPR/Cas9 system for the efficient production of mutant mice using crRNA/tracrRNA with Cas9 nickase and FokI-dCas9.
    Terao M; Tamano M; Hara S; Kato T; Kinoshita M; Takada S
    Exp Anim; 2016 Jul; 65(3):275-83. PubMed ID: 26972821
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The promise and peril of CRISPR gene drives: Genetic variation and inbreeding may impede the propagation of gene drives based on the CRISPR genome editing technology.
    Zentner GE; Wade MJ
    Bioessays; 2017 Oct; 39(10):. PubMed ID: 28863233
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Construction of a One-Vector Multiplex CRISPR/Cas9 Editing System to Inhibit Nucleopolyhedrovirus Replication in Silkworms.
    Dong Z; Qin Q; Hu Z; Chen P; Huang L; Zhang X; Tian T; Lu C; Pan M
    Virol Sin; 2019 Aug; 34(4):444-453. PubMed ID: 31218589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Putting the brakes on CRISPR-Cas9 gene drive systems.
    Graham DM
    Lab Anim (NY); 2016 Feb; 45(2):47. PubMed ID: 26814339
    [No Abstract]   [Full Text] [Related]  

  • 32. Synthesis and Evaluation of pH-Sensitive Multifunctional Lipids for Efficient Delivery of CRISPR/Cas9 in Gene Editing.
    Sun D; Sun Z; Jiang H; Vaidya AM; Xin R; Ayat NR; Schilb AL; Qiao PL; Han Z; Naderi A; Lu ZR
    Bioconjug Chem; 2019 Mar; 30(3):667-678. PubMed ID: 30582790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Publisher Correction: Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity.
    He F; Bhoobalan-Chitty Y; Van LB; Kjeldsen AL; Dedola M; Makarova KS; Koonin EV; Brodersen DE; Peng X
    Nat Microbiol; 2018 Sep; 3(9):1076. PubMed ID: 29934592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Corrigendum: Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae.
    Basgall EM; Goetting SC; Goeckel ME; Giersch RM; Roggenkamp E; Schrock MN; Halloran M; Finnigan GC
    Microbiology (Reading); 2018 Jul; 164(7):1004. PubMed ID: 29813017
    [No Abstract]   [Full Text] [Related]  

  • 35. Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae.
    Basgall EM; Goetting SC; Goeckel ME; Giersch RM; Roggenkamp E; Schrock MN; Halloran M; Finnigan GC
    Microbiology (Reading); 2018 Apr; 164(4):464-474. PubMed ID: 29488867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational plasticity of SpyCas9 induced by AcrIIA4 and AcrIIA2: Insights from molecular dynamics simulation.
    Wen S; Zhao Y; Qi X; Cai M; Huang K; Liu H; Kong DX
    Comput Struct Biotechnol J; 2024 Dec; 23():537-548. PubMed ID: 38235361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tuning CRISPR-Cas9 Gene Drives in
    Roggenkamp E; Giersch RM; Schrock MN; Turnquist E; Halloran M; Finnigan GC
    G3 (Bethesda); 2018 Mar; 8(3):999-1018. PubMed ID: 29348295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Yeast Still a Beast: Diverse Applications of CRISPR/Cas Editing Technology in
    Giersch RM; Finnigan GC
    Yale J Biol Med; 2017 Dec; 90(4):643-651. PubMed ID: 29259528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals.
    Mitsui R; Yamada R; Ogino H
    World J Microbiol Biotechnol; 2019 Jul; 35(7):111. PubMed ID: 31280424
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.