BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 2981802)

  • 21. The yeast frameshift suppressor gene SUF16-1 encodes an altered glycine tRNA containing the four-base anticodon 3'-CCCG-5'.
    Gaber RF; Culbertson MR
    Gene; 1982 Sep; 19(2):163-72. PubMed ID: 6293925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal suppression.
    Anderson JC; Schultz PG
    Biochemistry; 2003 Aug; 42(32):9598-608. PubMed ID: 12911301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of Escherichia coli amber suppressor tRNA genes. II. Synthesis of additional tRNA genes and improvement of suppressor efficiency.
    Kleina LG; Masson JM; Normanly J; Abelson J; Miller JH
    J Mol Biol; 1990 Jun; 213(4):705-17. PubMed ID: 2193162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A tRNA identity switch mediated by the binding interaction between a tRNA anticodon and the accessory domain of a class II aminoacyl-tRNA synthetase.
    Yan W; Augustine J; Francklyn C
    Biochemistry; 1996 May; 35(21):6559-68. PubMed ID: 8639604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction of Escherichia coli amber suppressor tRNA genes. III. Determination of tRNA specificity.
    Normanly J; Kleina LG; Masson JM; Abelson J; Miller JH
    J Mol Biol; 1990 Jun; 213(4):719-26. PubMed ID: 2141650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleotide sequence of an Escherichia coli tRNA (Leu 1) operon and identification of the transcription promoter signal.
    Duester G; Campen RK; Holmes WM
    Nucleic Acids Res; 1981 May; 9(9):2121-39. PubMed ID: 6272226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization and nucleotide sequence of a chicken gene encoding an opal suppressor tRNA and its flanking DNA segments.
    Hatfield DL; Dudock BS; Eden FC
    Proc Natl Acad Sci U S A; 1983 Aug; 80(16):4940-4. PubMed ID: 6308662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature sensitivity caused by missense suppressor supH and amber suppressor supP in Escherichia coli.
    Thorbjarnardóttir S; Björnsson A; Amundadóttir L; Eggertsson G
    J Bacteriol; 1991 Jan; 173(1):412-6. PubMed ID: 1987132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Importance of the G27-A43 mismatch at the anticodon stem of Escherichia coli tRNA(Thr2).
    Komine Y; Inokuchi H
    FEBS Lett; 1990 Oct; 272(1-2):55-7. PubMed ID: 2226835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Site-specific mutagenesis of Escherichia coli gltT yields a weak, glutamic acid-inserting ochre suppressor.
    Raftery LA; Yarus M
    J Mol Biol; 1985 Jul; 184(2):343-5. PubMed ID: 2863381
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solution conformation of several free tRNALeu species from bean, yeast and Escherichia coli and interaction of these tRNAs with bean cytoplasmic Leucyl-tRNA synthetase. A phosphate alkylation study with ethylnitrosourea.
    Dietrich A; Romby P; Maréchal-Drouard L; Guillemaut P; Giegé R
    Nucleic Acids Res; 1990 May; 18(9):2589-97. PubMed ID: 2187177
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shifted positioning of the anticodon nucleotide residues of amber suppressor tRNA species by Escherichia coli arginyl-tRNA synthetase.
    Kiga D; Sakamoto K; Sato S; Hirao I; Yokoyama S
    Eur J Biochem; 2001 Dec; 268(23):6207-13. PubMed ID: 11733016
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using iodinated single-stranded M13 probes to facilitate rapid DNA sequence analysis--nucleotide sequence of a mouse lysine tRNA gene.
    Han JH; Harding JD
    Nucleic Acids Res; 1983 Apr; 11(7):2053-64. PubMed ID: 6300790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Splicing of a yeast proline tRNA containing a novel suppressor mutation in the anticodon stem.
    Winey M; Mendenhall MD; Cummins CM; Culbertson MR; Knapp G
    J Mol Biol; 1986 Nov; 192(1):49-63. PubMed ID: 3546704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nucleotide sequence and transcription of a gene encoding human tRNAGlyCCC.
    Shortridge RD; Pirtle IL; Pirtle RM
    Gene; 1985; 33(3):269-77. PubMed ID: 2989090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Suppression of amber codons in vivo as evidence that mutants derived from Escherichia coli initiator tRNA can act at the step of elongation in protein synthesis.
    Seong BL; Lee CP; RajBhandary UL
    J Biol Chem; 1989 Apr; 264(11):6504-8. PubMed ID: 2649502
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of the leuX gene in Escherichia coli. Regulation at transcription and tRNA processing steps.
    Nomura T; Fujita N; Ishihama A
    J Mol Biol; 1987 Oct; 197(4):659-70. PubMed ID: 2448476
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The translational efficiency of tRNA is a property of the anticodon arm.
    Yarus M; Cline S; Raftery L; Wier P; Bradley D
    J Biol Chem; 1986 Aug; 261(23):10496-505. PubMed ID: 3525546
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selection of suppressor methionyl-tRNA synthetases: mapping the tRNA anticodon binding site.
    Meinnel T; Mechulam Y; Le Corre D; Panvert M; Blanquet S; Fayat G
    Proc Natl Acad Sci U S A; 1991 Jan; 88(1):291-5. PubMed ID: 1986377
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A G43 to U43 mutation in E. coli tRNAtyrsu3+ which affects processing by RNase P.
    Furdon PJ; Guerrier-Takada C; Altman S
    Nucleic Acids Res; 1983 Mar; 11(5):1491-505. PubMed ID: 6298744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.