These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 2981873)

  • 21. Mu transposase-stimulated illegitimate recombination of Tn3kan- and IS101-containing plasmids.
    Cameron RK; Ulycznyj PI; DuBow MS
    Res Microbiol; 1995 Oct; 146(8):601-16. PubMed ID: 8584785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transposition of bacteriophage mu DNA: expression of the A and B proteins from lambda pL and analysis of infecting mu DNA.
    Chaconas G; Gloor G; Miller JL; Kennedy DL; Giddens EB; Nagainis CR
    Cold Spring Harb Symp Quant Biol; 1984; 49():279-84. PubMed ID: 6099242
    [No Abstract]   [Full Text] [Related]  

  • 23. Disassembly of the Mu transposase tetramer by the ClpX chaperone.
    Levchenko I; Luo L; Baker TA
    Genes Dev; 1995 Oct; 9(19):2399-408. PubMed ID: 7557391
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transposition studies of mini-Mu plasmids constructed from the chemically synthesized ends of bacteriophage Mu.
    Patterson TA; Court DL; Dubuc G; Michniewicz JJ; Goodchild J; Bukhari AI; Narang SA
    Gene; 1986; 50(1-3):101-9. PubMed ID: 3034727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Genetic study of the effect of lambda phage on Mu phage production in Escherichia coli K-12 strains with Mu--lambda--Mu structures].
    Koretskaia NG; Piruzian ES
    Genetika; 1980; 16(8):1362-71. PubMed ID: 6450713
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A genetic study of Escherichia coli strains carrying Mu-lambda-Mu structures.
    Piruzian ES; Koretskaya NG
    Mol Gen Genet; 1983; 190(1):133-8. PubMed ID: 6222245
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation and expression of the bacteriophage mu mom gene: mapping of the transactivation (dad) function to the C region.
    Hattman S; Ives J; Margolin W; Howe MM
    Gene; 1985; 39(1):71-6. PubMed ID: 2934297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cloning of mini-mu bacteriophage in cosmids: in vivo packaging into phage lambda heads.
    de Mendoza D; Rosa AL
    Gene; 1985; 39(1):55-9. PubMed ID: 3000893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of amber mutations in bacteriophage Mu transposase: a functional analysis of the protein.
    Desmet L; Faelen M; Gama MJ; Ferhat A; Toussaint A
    Mol Microbiol; 1989 Sep; 3(9):1145-58. PubMed ID: 2552260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complete transposition requires four active monomers in the mu transposase tetramer.
    Baker TA; Kremenstova E; Luo L
    Genes Dev; 1994 Oct; 8(20):2416-28. PubMed ID: 7958906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phage Mu transposase: deletion of the carboxy-terminal end does not abolish DNA-binding activity.
    Betermier M; Alazard R; Ragueh F; Roulet E; Toussaint A; Chandler M
    Mol Gen Genet; 1987 Nov; 210(1):77-85. PubMed ID: 2828889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of bacteriophage mu transposition.
    Mizuuchi K; Craigie R
    Annu Rev Genet; 1986; 20():385-429. PubMed ID: 3028246
    [No Abstract]   [Full Text] [Related]  

  • 33. Disassembly of the bacteriophage Mu transposase for the initiation of Mu DNA replication.
    Nakai H; Kruklitis R
    J Biol Chem; 1995 Aug; 270(33):19591-8. PubMed ID: 7642646
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The amino terminus of the bacteriophage D108 transposase protein contains a two-component sequence-specific DNA-binding domain.
    Tolias PP; Dubow MS
    Virology; 1987 Mar; 157(1):117-26. PubMed ID: 3029952
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stimulation of the Mu A protein-mediated strand cleavage reaction by the Mu B protein, and the requirement of DNA nicking for stable type 1 transpososome formation. In vitro transposition characteristics of mini-Mu plasmids carrying terminal base pair mutations.
    Surette MG; Harkness T; Chaconas G
    J Biol Chem; 1991 Feb; 266(5):3118-24. PubMed ID: 1847140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Step-arrest mutants of phage Mu transposase. Implications in DNA-protein assembly, Mu end cleavage, and strand transfer.
    Kim K; Namgoong SY; Jayaram M; Harshey RM
    J Biol Chem; 1995 Jan; 270(3):1472-9. PubMed ID: 7836417
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient Mu transposition requires interaction of transposase with a DNA sequence at the Mu operator: implications for regulation.
    Mizuuchi M; Mizuuchi K
    Cell; 1989 Jul; 58(2):399-408. PubMed ID: 2546681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ClpX protein of Escherichia coli activates bacteriophage Mu transposase in the strand transfer complex for initiation of Mu DNA synthesis.
    Kruklitis R; Welty DJ; Nakai H
    EMBO J; 1996 Feb; 15(4):935-44. PubMed ID: 8631314
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome mapping and protein coding region identification using bacteriophage Mu.
    Groisman EA; Pagratis N; Casadaban MJ
    Gene; 1991 Mar; 99(1):1-7. PubMed ID: 1827084
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Site-specific recombinases: changing partners and doing the twist.
    Sadowski P
    J Bacteriol; 1986 Feb; 165(2):341-7. PubMed ID: 3003022
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.