BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 2982386)

  • 1. Superoxide radical reactions with anthracycline antibiotics.
    Nakazawa H; Andrews PA; Callery PS; Bachur NR
    Biochem Pharmacol; 1985 Feb; 34(4):481-90. PubMed ID: 2982386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical.
    Doroshow JH; Davies KJ
    J Biol Chem; 1986 Mar; 261(7):3068-74. PubMed ID: 3005279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox activities of antitumor anthracyclines determined by microsomal oxygen consumption and assays for superoxide anion and hydroxyl radical generation.
    Peters JH; Gordon GR; Kashiwase D; Lown JW; Yen SF; Plambeck JA
    Biochem Pharmacol; 1986 Apr; 35(8):1309-23. PubMed ID: 3008758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of anthracycline antibiotics on oxygen radical formation in rat heart.
    Doroshow JH
    Cancer Res; 1983 Feb; 43(2):460-72. PubMed ID: 6293697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nature of the superoxide ion in dipolar aprotic solvents: the electron paramagnetic resonance spectra of the superoxide ion in N,N-dimethylformamide-evidence for hydrated forms.
    Green MR; Hill HA; Turner DR
    FEBS Lett; 1979 Jul; 103(1):176-80. PubMed ID: 223879
    [No Abstract]   [Full Text] [Related]  

  • 6. Kinetic study of the electron-transfer oxidation of the phenolate anion of a vitamin E model by molecular oxygen generating superoxide anion in an aprotic medium.
    Nakanishi I; Miyazaki K; Shimada T; Iizuka Y; Inami K; Mochizuki M; Urano S; Okuda H; Ozawa T; Fukuzumi S; Ikota N; Fukuhara K
    Org Biomol Chem; 2003 Nov; 1(22):4085-8. PubMed ID: 14664398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase.
    Doroshow JH
    Cancer Res; 1983 Oct; 43(10):4543-51. PubMed ID: 6309369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic studies on the reaction of superoxide ion with tocopherol model compound, 6-hydroxy-2,2,5,7,8-pentamethylchroman.
    Ozawa T; Hanaki A
    Biochem Biophys Res Commun; 1985 Jan; 126(2):873-8. PubMed ID: 2983695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosensitization by anticancer agents--10. ortho-semiquinone and superoxide radicals produced during anthrapyrazole-sensitized oxidation of catechols.
    Reszka K; Lown JW; Chignell CF
    Photochem Photobiol; 1992 Mar; 55(3):359-66. PubMed ID: 1313979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free radical formation from anthracycline antitumour agents and model systems--I. Model naphthoquinones and anthraquinones.
    Dodd NJ; Mukherjee T
    Biochem Pharmacol; 1984 Feb; 33(3):379-85. PubMed ID: 6322802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The antibiotic galtamycin. The structure of galtamycinone].
    Murenets NV; Kudinova MK; Kliuev NA; Chernyshev AI; Shorshnev SV
    Antibiot Med Biotekhnol; 1986 Jun; 31(6):431-4. PubMed ID: 3017199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron spin resonance studies on the oxidation of rifamycin SV catalyzed by metal ions.
    Kono Y; Sugiura Y
    J Biochem; 1982 Jan; 91(1):397-401. PubMed ID: 6279586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Further studies on the generation of reactive oxygen species from activated anthracyclines and the relationship to cytotoxic action and cardiotoxic effects.
    Lown JW; Chen HH; Plambeck JA; Acton EM
    Biochem Pharmacol; 1982 Feb; 31(4):575-81. PubMed ID: 6279110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosensitization by antitumor agents. 5. Daunorubicin-photosensitized oxidation of NAD(P)H in aqueous and N,N-dimethylformamide/aqueous solutions--an electron paramagnetic resonance study.
    Reszka K; Kolodziejczyk P; Lown JW
    Free Radic Biol Med; 1988; 5(2):63-70. PubMed ID: 2855419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photogeneration of superoxide by adriamycin and daunomycin. An electron spin resonance and spin trapping study.
    Carmichael AJ; Mossoba MM; Riesz P
    FEBS Lett; 1983 Dec; 164(2):401-5. PubMed ID: 6317461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox chemistry of anthracycline antitumor drugs and use of captodative radicals as tools for its elucidation and control.
    Gaudiano G; Koch TH
    Chem Res Toxicol; 1991; 4(1):2-16. PubMed ID: 1912296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Singlet oxygen production from the reactions of superoxide ion in aprotic solvents: implications for hydrophobic biochemistry.
    Kanofsky JR
    Free Radic Res Commun; 1991; 12-13 Pt 1():87-92. PubMed ID: 1649107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction of superoxide radical with quinone molecules.
    Samoilova RI; Crofts AR; Dikanov SA
    J Phys Chem A; 2011 Oct; 115(42):11589-93. PubMed ID: 21910470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free radicals generated during oxidation of green tea polyphenols: electron paramagnetic resonance spectroscopy combined with density functional theory calculations.
    Severino JF; Goodman BA; Kay CW; Stolze K; Tunega D; Reichenauer TG; Pirker KF
    Free Radic Biol Med; 2009 Apr; 46(8):1076-88. PubMed ID: 19439236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the mechanism of reductive activation in the mode of action of some anticancer drugs.
    Favaudon V
    Biochimie; 1982 Jul; 64(7):457-75. PubMed ID: 6181817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.