These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 2982436)
1. [ATPase activity of the heart microsomes, the regulation of calcium transport in the microsomes and the calmodulin content in experimental myocardial infarct]. Antipenko AE; Sviderskaia EV; Lyzlova AN Biull Eksp Biol Med; 1985 Feb; 99(2):152-4. PubMed ID: 2982436 [TBL] [Abstract][Full Text] [Related]
2. [Cyclic AMP level, dissociation of membrane-bound calmodulin and regulation of calcium transport in the heart sarcoplasmatic reticulum in circulatory hypoxia]. Antipenko AE; Sviderskaia EV; Lyzlova SN Vopr Med Khim; 1985; 31(4):70-3. PubMed ID: 2996224 [TBL] [Abstract][Full Text] [Related]
3. [cAMP, calmodulin-dependent stimulation and stability to proteolysis of Ca 2+ transport in the heart sarcoplasmic reticulum]. Antipenko AE; Sviderskaia EV; Dizhe GP; Krasnovskaia IE Biokhimiia; 1989 Dec; 54(12):2023-9. PubMed ID: 2561265 [TBL] [Abstract][Full Text] [Related]
4. Characterization of calmodulin-dependent and cyclic-AMP-dependent protein kinase stimulation of cardiac sarcoplasmic reticulum calcium transport. Katz S; Richter B; Eibschutz B Adv Myocardiol; 1985; 6():233-47. PubMed ID: 3158044 [TBL] [Abstract][Full Text] [Related]
5. Control of calcium transport in the myocardium by the cyclic AMP-Protein kinase system. Katz AM; Tada M; Kirchberger MA Adv Cyclic Nucleotide Res; 1975; 5():453-72. PubMed ID: 165680 [TBL] [Abstract][Full Text] [Related]
6. [Effect of calmodulin and 3':5'-AMP-dependent protein kinases on calcium transport by sarcoplasmic reticulum of normal rabbit myocardium and in toxico-allergic myocarditis]. Karsanov NV; Khugashvili ZG Biokhimiia; 1983 Aug; 48(8):1359-64. PubMed ID: 6313076 [TBL] [Abstract][Full Text] [Related]
7. Sarcoplasmic reticular Ca2+ pump ATPase activity in congestive heart failure due to myocardial infarction. Afzal N; Dhalla NS Can J Cardiol; 1996 Oct; 12(10):1065-73. PubMed ID: 9191500 [TBL] [Abstract][Full Text] [Related]
8. Compensatory adaptation of the heart to chronic rate overload: increase in calcium transport ATPase activity of myocardial sarcoplasmic reticulum. O'Brien PJ; Ling E; Williams HM; Brotherton S; Salerno T; Lumsden JH; Ianuzzo CD Can J Cardiol; 1988; 4(5):243-50. PubMed ID: 2970289 [TBL] [Abstract][Full Text] [Related]
9. [Disturbance of Ca+2-calmodulin- and cAMP-dependent regulation of Ca2+ transport in myocardial sarcoplasmic reticulum in experimental information disease]. Khananashvili MM; Karsanov NV; Khugashvili ZG; Iarovaia EV; Suknidze TsG; Kartvelishvili RG Fiziol Cheloveka; 1992; 18(2):49-54. PubMed ID: 1319360 [No Abstract] [Full Text] [Related]
10. Role of regucalcin as an activator of sarcoplasmic reticulum Ca2+-ATPase activity in rat heart muscle. Yamaguchi M; Nakajima R J Cell Biochem; 2002; 86(1):184-93. PubMed ID: 12112029 [TBL] [Abstract][Full Text] [Related]
11. Calmodulin-mediated regulation of calcium transport and (Ca2+ + Mg2+)-activated ATPase activity in isolated cardiac sarcoplasmic reticulum. Kirchberger MA; Antonetz T J Biol Chem; 1982 May; 257(10):5685-91. PubMed ID: 6121798 [TBL] [Abstract][Full Text] [Related]
12. Ca2+/calmodulin-dependent phosphorylation of the Ca2+-ATPase, uncoupled from phospholamban, stimulates Ca2+-pumping in native cardiac sarcoplasmic reticulum. Xu A; Narayanan N Biochem Biophys Res Commun; 1999 Apr; 258(1):66-72. PubMed ID: 10222236 [TBL] [Abstract][Full Text] [Related]
13. [Calcium transport and ATPase activity of mitochondria and sarcoplasmic reticulum fragments of rabbit heart and muscle in hypercholesteremia]. Chernysheva GV; Stoĭda LV; Kuz'mina IL Biull Eksp Biol Med; 1980 Mar; 89(3):292-4. PubMed ID: 6446328 [TBL] [Abstract][Full Text] [Related]
14. [Phosphorylation of phospholamban in experimental myocardial infarction and proteolysis stabilization during phosphorylation]. Antipenko AE; Goncharov OG; Skvortsova GP; Lyzlova SN Biull Eksp Biol Med; 1983 Sep; 96(9):42-5. PubMed ID: 6311310 [TBL] [Abstract][Full Text] [Related]
15. Quench-flow measurements of initial rates of Ca2+ accumulation by isolated cardiac sarcoplasmic reticulum. Will H; Blanck J; Smettan G; Wollenberger A Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():199-204. PubMed ID: 201981 [TBL] [Abstract][Full Text] [Related]
16. Effects of ryanodine on a myocardial membrane vesicular fraction. Frank M; Sleator WW Res Commun Chem Pathol Pharmacol; 1975 May; 11(1):65-72. PubMed ID: 125444 [TBL] [Abstract][Full Text] [Related]
17. Characterization of calmodulin effects on calcium transport in cardiac microsomes enriched in sarcoplasmic reticulum. Lopaschuk G; Richter B; Katz S Biochemistry; 1980 Nov; 19(24):5603-7. PubMed ID: 6257283 [TBL] [Abstract][Full Text] [Related]
18. [ATP-dependent transport of calcium in the myocardial sarcoplasmic reticulum during adaptation to muscular activities]. Kalinskiĭ MI; Gubskiĭ IuI; Rudnitskaia ND; Kurskiĭ MD Vopr Med Khim; 1989; 35(4):31-4. PubMed ID: 2815676 [TBL] [Abstract][Full Text] [Related]
19. Effect of shock on calcium accumulation by cardiac sarcoplasmic reticulum. Estes JE; Farley PE; Goldfarb RD Adv Shock Res; 1980; 3():229-37. PubMed ID: 6458201 [TBL] [Abstract][Full Text] [Related]
20. Ontogeny of sarcoplasmic reticulum protein phosphorylation by Ca2+--calmodulin-dependent protein kinase. Xu A; Hawkins C; Narayanan N J Mol Cell Cardiol; 1997 Jan; 29(1):405-18. PubMed ID: 9040054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]