These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 2982569)
1. Pharmacological characterization of the angiotensin receptor negatively coupled with adenylate cyclase in rat anterior pituitary gland. Marie J; Gaillard RC; Schoenenberg P; Jard S; Bockaert J Endocrinology; 1985 Mar; 116(3):1044-50. PubMed ID: 2982569 [TBL] [Abstract][Full Text] [Related]
2. Pharmacological characterization of the D2 dopamine receptor negatively coupled with adenylate cyclase in rat anterior pituitary. Enjalbert A; Bockaert J Mol Pharmacol; 1983 May; 23(3):576-84. PubMed ID: 6306429 [TBL] [Abstract][Full Text] [Related]
3. Involvement of protein kinase-C in the effect of angiotensin-II on adenosine 3',5'-monophosphate production in lactotroph cells. Audinot V; Rasolonjanahary R; Bertrand P; Priam M; Kordon C; Enjalbert A Endocrinology; 1991 Oct; 129(4):2231-9. PubMed ID: 1655395 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of adenylate cyclase in rat adrenal glomerulosa cells by angiotensin II. Woodcock EA; Johnston CI Endocrinology; 1984 Jul; 115(1):337-41. PubMed ID: 6329657 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of adenylate cyclase by angiotensin II in rat renal cortex. Woodcock EA; Johnston CI Endocrinology; 1982 Nov; 111(5):1687-91. PubMed ID: 7128530 [TBL] [Abstract][Full Text] [Related]
6. Angiotensin II receptor recognized by DuP753 regulates two distinct guanine nucleotide-binding protein signaling pathways. Crawford KW; Frey EA; Cote TE Mol Pharmacol; 1992 Jan; 41(1):154-62. PubMed ID: 1310139 [TBL] [Abstract][Full Text] [Related]
7. Hormonal inhibition of adenylate cyclase. A crucial role for Mg2+. Bockaert J; Cantau B; Sebben-Perez M Mol Pharmacol; 1984 Sep; 26(2):180-6. PubMed ID: 6541292 [TBL] [Abstract][Full Text] [Related]
8. Somatostatin receptors on pituitary somatotrophs, thyrotrophs, and lactotrophs: pharmacological evidence for loose coupling to adenylate cyclase. Epelbaum J; Enjalbert A; Krantic S; Musset F; Bertrand P; Rasolonjanahary R; Shu C; Kordon C Endocrinology; 1987 Dec; 121(6):2177-85. PubMed ID: 2890515 [TBL] [Abstract][Full Text] [Related]
9. The somatostatin receptor is directly coupled to adenylate cyclase in GH4C1 pituitary cell membranes. Koch BD; Schonbrunn A Endocrinology; 1984 May; 114(5):1784-90. PubMed ID: 6143660 [TBL] [Abstract][Full Text] [Related]
10. Angiotensin II receptors and prolactin release in pituitary lactotrophs. Aguilera G; Hyde CL; Catt KJ Endocrinology; 1982 Oct; 111(4):1045-50. PubMed ID: 6288343 [TBL] [Abstract][Full Text] [Related]
11. Angiotensin II receptors negatively coupled to adenylate cyclase in rat myocardial sarcolemma. Involvement of inhibitory guanine nucleotide regulatory protein. Anand-Srivastava MB Biochem Pharmacol; 1989 Feb; 38(3):489-96. PubMed ID: 2492805 [TBL] [Abstract][Full Text] [Related]
12. Angiotensin II receptors negatively coupled to adenylate cyclase in rat aorta. Anand-Srivastava MB Biochem Biophys Res Commun; 1983 Dec; 117(2):420-8. PubMed ID: 6318757 [TBL] [Abstract][Full Text] [Related]
13. Evidence for the presence and characterization of angiotensin II receptors in rat anterior pituitary membranes. Mukherjee A; Kulkarni P; McCann SM; Negro-Vilar A Endocrinology; 1982 Feb; 110(2):665-7. PubMed ID: 6276145 [TBL] [Abstract][Full Text] [Related]
14. Chronic estrogen treatment promotes a functional uncoupling of the D2 dopamine receptor in rat anterior pituitary gland. Munemura M; Agui T; Sibley DR Endocrinology; 1989 Jan; 124(1):346-55. PubMed ID: 2521206 [TBL] [Abstract][Full Text] [Related]
15. Corticotropin-releasing factor binding to the anterior pituitary receptor is modulated by divalent cations and guanyl nucleotides. Perrin MH; Haas Y; Rivier JE; Vale WW Endocrinology; 1986 Mar; 118(3):1171-9. PubMed ID: 3004898 [TBL] [Abstract][Full Text] [Related]
16. Regulation of corticotropin-releasing factor (CRF) receptors in the rat pituitary gland: effects of adrenalectomy on CRF receptors and corticotroph responses. Wynn PC; Harwood JP; Catt KJ; Aguilera G Endocrinology; 1985 Apr; 116(4):1653-9. PubMed ID: 2982594 [TBL] [Abstract][Full Text] [Related]
17. Structural requirements for the activation of rat anterior pituitary adenylate cyclase by growth hormone-releasing factor (GRF): discovery of (N-Ac-Tyr1, D-Arg2)-GRF(1-29)-NH2 as a GRF antagonist on membranes. Robberecht P; Coy DH; Waelbroeck M; Heiman ML; de Neef P; Camus JC; Christophe J Endocrinology; 1985 Nov; 117(5):1759-64. PubMed ID: 2994998 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of VIP-sensitive adenylate cyclase by dopamine in rat anterior pituitary. Onali P; Schwartz JP; Costa E Adv Biochem Psychopharmacol; 1983; 36():199-207. PubMed ID: 6344565 [No Abstract] [Full Text] [Related]
19. Multiple coupling of neurohormone receptors with cyclic AMP and inositol phosphate production in anterior pituitary cells. Enjalbert A; Bertrand P; Bockaert J; Drouva S; Kordon C Biochimie; 1987 Apr; 69(4):271-9. PubMed ID: 2820513 [TBL] [Abstract][Full Text] [Related]
20. Characterization of dopamine receptors mediating inhibition of adenylate cyclase activity in rat striatum. Onali P; Olianas MC; Gessa GL Mol Pharmacol; 1985 Aug; 28(2):138-45. PubMed ID: 2410769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]